Redox regulation of morphology, cell stiffness, and lectin-induced aggregation of human platelets.

Ekaterina V Shamova, Irina V Gorudko, Elizaveta S Drozd, Sergey A Chizhik, Grigory G Martinovich, Sergey N Cherenkevich, Alexander V Timoshenko
Author Information
  1. Ekaterina V Shamova: Department of Biophysics, Belarusian State University, Nezavisimosti Ave. 4, 220030 Minsk, Belarus. shamova@tut.by

Abstract

Redox regulation and carbohydrate recognition are potent molecular mechanisms which can contribute to platelet aggregation in response to various stimuli. The purpose of this study is to investigate the relationship between these mechanisms and to examine whether cell surface glycocalyx and cell stiffness of human platelets are sensitive to the redox potential formed by glutathione. To this end, human platelets were treated with different concentrations (0.05 μM to 6 mM) and ratios of reduced or oxidized glutathione (GSH or GSSG), and platelet morphological, mechanical, and functional properties were determined using conventional light microscopy, atomic force microscopy, and lectin-induced cell aggregation analysis. It was found that lowering the glutathione redox potential changed platelet morphology and increased platelet stiffness as well as modulated nonuniformly platelet aggregation in response to plant lectins with different carbohydrate-binding specificity including wheat germ agglutinin, Sambucus nigra agglutinin, and Canavalia ensiformis agglutinin. Extracellular redox potential and redox buffering capacity of the GSSG/2GSH couple were shown to control the availability of specific lectin-binding glycoligands on the cell surface, while the intracellular glutathione redox state affected the general functional ability of platelets to be aggregated independently of the type of lectins. Our data provide the first experimental evidence that glutathione as a redox molecule can affect the mechanical stiffness of human platelets and induce changes of the cell surface glycocalyx, which may represent a new mechanism of redox regulation of intercellular contacts.

References

  1. J Biol Chem. 2000 Mar 17;275(11):7527-33 [PMID: 10713057]
  2. Toxicol Sci. 2001 Jul;62(1):176-82 [PMID: 11399805]
  3. Clin Chim Acta. 2003 Jul 1;333(1):19-39 [PMID: 12809732]
  4. Antioxid Redox Signal. 2009 May;11(5):981-3 [PMID: 19186997]
  5. Cornea. 2003 Oct;22(7):651-64 [PMID: 14508261]
  6. Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2829-34 [PMID: 19202069]
  7. Sci STKE. 2006 Aug 29;2006(350):pe33 [PMID: 16940439]
  8. Nanotechnology. 2010 Jul 16;21(28):285704 [PMID: 20585162]
  9. Annu Rev Nutr. 2004;24:481-509 [PMID: 15189129]
  10. Ultramicroscopy. 2000 Feb;82(1-4):259-67 [PMID: 10741678]
  11. Antioxid Redox Signal. 2009 May;11(5):1191-225 [PMID: 19061441]
  12. J Phys Chem C Nanomater Interfaces. 2007 Nov 1;111(43):15848-15856 [PMID: 19081797]
  13. Free Radic Biol Med. 2003 Jan 1;34(1):23-32 [PMID: 12498976]
  14. FEBS Lett. 1999 Apr 16;449(1):75-8 [PMID: 10225432]
  15. Blood. 1986 Mar;67(3):604-11 [PMID: 3004616]
  16. Arch Med Res. 2008 Oct;39(7):674-81 [PMID: 18760196]
  17. Science. 1992 Sep 11;257(5076):1496-502 [PMID: 1523409]
  18. Biophys J. 1996 Jan;70(1):556-67 [PMID: 8770233]
  19. Exp Cell Res. 2002 Aug 1;278(1):92-100 [PMID: 12126961]
  20. Stroke. 2004 Sep;35(9):2072-7 [PMID: 15256685]
  21. Nat Med. 2002 Nov;8(11):1227-34 [PMID: 12411949]
  22. Biochemistry (Mosc). 1998 May;63(5):516-22 [PMID: 9632885]
  23. Nat Chem Biol. 2009 Oct;5(10):721-3 [PMID: 19718041]
  24. Cancer Lett. 1995 Jul 20;94(1):107-11 [PMID: 7621438]
  25. Thromb Res. 1989 Mar 1;53(5):457-65 [PMID: 2734729]
  26. Anal Biochem. 2009 Nov 15;394(2):147-58 [PMID: 19664585]
  27. Free Radic Res. 2005 Jun;39(6):573-80 [PMID: 16036334]
  28. J Biol Chem. 2004 Jul 9;279(28):29231-5 [PMID: 15136566]
  29. Transfusion. 1987 Jul-Aug;27(4):342-6 [PMID: 3603664]
  30. J Biomech. 2001 Dec;34(12):1545-53 [PMID: 11716856]
  31. Cell Biophys. 1990 Oct;17(2):163-80 [PMID: 1705482]
  32. Biochem Biophys Res Commun. 1993 Mar 15;191(2):453-8 [PMID: 8384840]
  33. Glycobiology. 2008 Jun;18(6):426-40 [PMID: 18390826]
  34. Nanotechnology. 2009 Apr 29;20(17):175104 [PMID: 19420584]
  35. Haematologica. 1996 Nov-Dec;81(6):497-502 [PMID: 9009436]
  36. Scanning. 1998 Aug;20(5):389-97 [PMID: 9737018]
  37. Thromb Haemost. 1999 Jan;81(1):124-30 [PMID: 10348703]
  38. Biophys J. 1994 May;66(5):1328-34 [PMID: 8061188]
  39. Free Radic Biol Med. 1999 Dec;27(11-12):1208-18 [PMID: 10641713]
  40. Biol Pharm Bull. 2001 Jan;24(1):19-26 [PMID: 11201240]
  41. J Immunol. 1994 Feb 1;152(3):1064-71 [PMID: 7507957]
  42. Free Radic Biol Med. 2001 Dec 15;31(12):1624-32 [PMID: 11744337]
  43. Free Radic Biol Med. 2002 Dec 1;33(11):1499-506 [PMID: 12446207]
  44. Free Radic Biol Med. 1998 Mar 15;24(5):699-704 [PMID: 9586798]
  45. Thromb Haemost. 1979 Dec 21;42(4):1324-31 [PMID: 542937]
  46. FEBS Lett. 1985 Apr 22;183(2):433-8 [PMID: 2985439]
  47. Thromb Haemost. 2008 Nov;100(5):857-63 [PMID: 18989530]
  48. Biochem J. 1967 Jul;104(1):95-102 [PMID: 6035529]
  49. Biochemistry. 2003 Jan 14;42(1):129-36 [PMID: 12515547]
  50. Biochem Mol Biol Int. 1996 Dec;40(6):1149-58 [PMID: 8988326]
  51. Free Radic Biol Med. 2000 Apr 15;28(8):1222-31 [PMID: 10889452]
  52. Semin Hematol. 2006 Jan;43(1 Suppl 1):S94-100 [PMID: 16427392]
  53. Cell Motil Cytoskeleton. 2005 Oct;62(2):124-32 [PMID: 16145686]

MeSH Term

Blood Platelets
Glutathione
Humans
Lectins
Microscopy, Atomic Force
Oxidation-Reduction
Platelet Aggregation
Protein Binding
Wheat Germ Agglutinins

Chemicals

Lectins
Wheat Germ Agglutinins
Glutathione

Word Cloud

Created with Highcharts 10.0.0redoxcellplateletplateletsglutathioneaggregationstiffnesshumanregulationsurfacepotentialagglutininRedoxmechanismscanresponseglycocalyxdifferentmechanicalfunctionalmicroscopylectin-inducedmorphologylectinscarbohydraterecognitionpotentmolecularcontributevariousstimulipurposestudyinvestigaterelationshipexaminewhethersensitiveformedendtreatedconcentrations005 μM6 mMratiosreducedoxidizedGSHGSSGmorphologicalpropertiesdeterminedusingconventionallightatomicforceanalysisfoundloweringchangedincreasedwellmodulatednonuniformlyplantcarbohydrate-bindingspecificityincludingwheatgermSambucusnigraCanavaliaensiformisExtracellularbufferingcapacityGSSG/2GSHcoupleshowncontrolavailabilityspecificlectin-bindingglycoligandsintracellularstateaffectedgeneralabilityaggregatedindependentlytypedataprovidefirstexperimentalevidencemoleculeaffectinducechangesmayrepresentnewmechanismintercellularcontacts

Similar Articles

Cited By