Sensitivity of beamformer source analysis to deficiencies in forward modeling.

Olaf Steinsträter, Stephanie Sillekens, Markus Junghoefer, Martin Burger, Carsten H Wolters
Author Information
  1. Olaf Steinsträter: Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany. olaf.steinstraeter@uni-muenster.de

Abstract

Beamforming approaches have recently been developed for the field of electroencephalography (EEG) and magnetoencephalography (MEG) source analysis and opened up new applications within various fields of neuroscience. While the number of beamformer applications thus increases fast-paced, fundamental methodological considerations, especially the dependence of beamformer performance on leadfield accuracy, is still quite unclear. In this article, we present a systematic study on the influence of improper volume conductor modeling on the source reconstruction performance of an EEG-data based synthetic aperture magnetometry (SAM) beamforming approach. A finite element model of a human head is derived from multimodal MR images and serves as a realistic volume conductor model. By means of a theoretical analysis followed by a series of computer simulations insight is gained into beamformer performance with respect to reconstruction errors in peak location, peak amplitude, and peak width resulting from geometry and anisotropy volume conductor misspecifications, sensor noise, and insufficient sensor coverage. We conclude that depending on source position, sensor coverage, and accuracy of the volume conductor model, localization errors up to several centimeters must be expected. As we could show that the beamformer tries to find the best fitting leadfield (least squares) with respect to its scanning space, this result can be generalized to other localization methods. More specific, amplitude, and width of the beamformer peaks significantly depend on the interaction between noise and accuracy of the volume conductor model. The beamformer can strongly profit from a high signal-to-noise ratio, but this requires a sufficiently realistic volume conductor model.

References

  1. Neuroimage. 2003 Aug;19(4):1589-601 [PMID: 12948714]
  2. Phys Med Biol. 1987 Jan;32(1):91-7 [PMID: 3823145]
  3. Neuroimage. 2007 Aug 1;37(1):282-9 [PMID: 17566766]
  4. Neuroimage. 2008 Feb 15;39(4):1788-802 [PMID: 18155612]
  5. IEEE Trans Biomed Eng. 1996 Mar;43(3):299-303 [PMID: 8682542]
  6. Hum Brain Mapp. 2005 Jun;25(2):199-211 [PMID: 15846771]
  7. Neuroimage. 2009 Jul 15;46(4):1055-65 [PMID: 19264145]
  8. Brain Topogr. 2004 Summer;16(4):245-8 [PMID: 15379221]
  9. Neuroreport. 2007 Sep 17;18(14):1449-53 [PMID: 17712272]
  10. IEEE Trans Biomed Eng. 2004 Oct;51(10):1726-34 [PMID: 15490820]
  11. Phys Med Biol. 2005 Aug 21;50(16):3787-806 [PMID: 16077227]
  12. Neuroimage. 2003 Dec;20(4):2302-13 [PMID: 14683731]
  13. Neuroimage. 2007 Jan 1;34(1):426-34 [PMID: 17049276]
  14. IEEE Trans Biomed Eng. 1997 Sep;44(9):867-80 [PMID: 9282479]
  15. Phys Med Biol. 2009 Jan 7;54(1):135-47 [PMID: 19075359]
  16. Neurol Clin Neurophysiol. 2004 Nov 30;2004:109 [PMID: 16012649]
  17. Neuroimage. 2006 Jul 15;31(4):1513-24 [PMID: 16631381]
  18. Neuroimage. 2003 Oct;20(2):995-1005 [PMID: 14568469]
  19. Bull Math Biophys. 1967 Dec;29(4):657-64 [PMID: 5582145]
  20. Electroencephalogr Clin Neurophysiol. 1998 Jun;106(6):522-34 [PMID: 9741752]
  21. Acta Otolaryngol Suppl. 1991;491:61-8; discussion 69 [PMID: 1814156]
  22. Hum Brain Mapp. 2002 Apr;15(4):199-215 [PMID: 11835609]
  23. Neuroimage. 2003 Aug;19(4):1329-36 [PMID: 12948691]
  24. Neuroimage. 2004;23 Suppl 1:S289-99 [PMID: 15501098]
  25. IEEE Trans Biomed Eng. 1999 Nov;46(11):1281-7 [PMID: 10582412]
  26. IEEE Trans Biomed Eng. 2006 Jul;53(7):1357-63 [PMID: 16830939]
  27. IEEE Trans Med Imaging. 2005 Jan;24(1):12-28 [PMID: 15638183]
  28. Hum Brain Mapp. 2009 Jan;30(1):92-100 [PMID: 17979116]
  29. IEEE Trans Biomed Eng. 2009 Apr;56(4):988-95 [PMID: 19272874]
  30. Hum Brain Mapp. 2003 Jan;18(1):1-12 [PMID: 12454907]
  31. Electroencephalogr Clin Neurophysiol. 1985 Jan;62(1):32-44 [PMID: 2578376]
  32. Neuroimage. 2006 Apr 15;30(3):813-26 [PMID: 16364662]
  33. Brain Topogr. 2004 Spring;16(3):139-58 [PMID: 15162912]
  34. IEEE Trans Biomed Eng. 2002 May;49(5):409-18 [PMID: 12002172]
  35. Appl Numer Math. 2009 Aug;59(8):1970-1988 [PMID: 20161462]
  36. IEEE Trans Biomed Eng. 2002 Dec;49(12 Pt 2):1534-46 [PMID: 12549735]
  37. Ann Biomed Eng. 2000 Sep;28(9):1059-65 [PMID: 11132189]
  38. Electroencephalogr Clin Neurophysiol. 1997 Apr;102(4):267-78 [PMID: 9146486]
  39. Electroencephalogr Clin Neurophysiol. 1993 Oct;87(4):175-84 [PMID: 7691548]
  40. Neuroimage. 2003 Sep;20(1):135-44 [PMID: 14527576]
  41. Neuroimage. 2004 Aug;22(4):1447-55 [PMID: 15275902]
  42. Methods. 2001 Oct;25(2):249-71 [PMID: 11812209]
  43. Neuroimage. 2007 Feb 15;34(4):1454-65 [PMID: 17196835]
  44. Conf Proc IEEE Eng Med Biol Soc. 2006;2006:4536-9 [PMID: 17947096]
  45. Hum Brain Mapp. 1998;6(4):250-69 [PMID: 9704264]
  46. IEEE Trans Biomed Eng. 1993 Nov;40(11):1166-74 [PMID: 8307601]
  47. Phys Med Biol. 2004 Mar 7;49(5):701-17 [PMID: 15070197]
  48. Anesth Analg. 1968 Nov-Dec;47(6):717-23 [PMID: 4972743]
  49. Clin Neurophysiol. 2007 Aug;118(8):1691-704 [PMID: 17587643]
  50. IEEE Trans Biomed Eng. 2001 Jul;48(7):760-71 [PMID: 11442288]
  51. IEEE Trans Biomed Eng. 2006 Sep;53(9):1765-74 [PMID: 16941832]
  52. Hum Brain Mapp. 2004 Oct;23(2):120-7 [PMID: 15340934]
  53. Exp Brain Res. 2009 Mar;193(3):387-96 [PMID: 19011844]
  54. Hum Brain Mapp. 2006 Mar;27(3):213-29 [PMID: 16037985]
  55. Neuroimage. 2004 Nov;23(3):983-96 [PMID: 15528099]
  56. Neuroimage. 2004 Nov;23(3):936-46 [PMID: 15528094]
  57. Neuroimage. 2005 May 1;25(4):1056-67 [PMID: 15850724]
  58. Phys Med Biol. 1987 Jan;32(1):11-22 [PMID: 3823129]
  59. J Clin Neurophysiol. 2007 Apr;24(2):101-19 [PMID: 17414966]

MeSH Term

Algorithms
Anisotropy
Brain
Computer Simulation
Electroencephalography
Finite Element Analysis
Head
Humans
Image Processing, Computer-Assisted
Magnetoencephalography
Reproducibility of Results

Word Cloud

Created with Highcharts 10.0.0beamformervolumeconductormodelsourceanalysisperformanceaccuracypeaksensorapplicationsleadfieldmodelingreconstructionrealisticrespecterrorsamplitudewidthnoisecoveragelocalizationcanBeamformingapproachesrecentlydevelopedfieldelectroencephalographyEEGmagnetoencephalographyMEGopenednewwithinvariousfieldsneurosciencenumberthusincreasesfast-pacedfundamentalmethodologicalconsiderationsespeciallydependencestillquiteuncleararticlepresentsystematicstudyinfluenceimproperEEG-databasedsyntheticaperturemagnetometrySAMbeamformingapproachfiniteelementhumanheadderivedmultimodalMRimagesservesmeanstheoreticalfollowedseriescomputersimulationsinsightgainedlocationresultinggeometryanisotropymisspecificationsinsufficientconcludedependingpositionseveralcentimetersmustexpectedshowtriesfindbestfittingleastsquaresscanningspaceresultgeneralizedmethodsspecificpeakssignificantlydependinteractionstronglyprofithighsignal-to-noiseratiorequiressufficientlySensitivitydeficienciesforward

Similar Articles

Cited By