Detection of respiratory syncytial virus using nanoparticle amplified immuno-polymerase chain reaction.

Jonas W Perez, Elizabeth A Vargis, Patricia K Russ, Frederick R Haselton, David W Wright
Author Information
  1. Jonas W Perez: Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.

Abstract

In traditional immuno-polymerase chain reaction (immuno-PCR), a single antibody recognition event is associated with one to three DNA tags, which are subsequently amplified by PCR. Here we describe a nanoparticle-amplified immuno-PCR (NPA-IPCR) assay that combines antibody recognition of enzyme-linked immunosorbent assay (ELISA) with a 50-fold nanoparticle valence amplification step prior to tag amplification by PCR. The assay detects a respiratory syncytial virus (RSV) surface protein using an antibody bound to a 15-nm gold nanoparticle cofunctionalized with thiolated DNA complementary to a hybridized 76-base tag DNA with a tag DNA/antibody ratio of 50:1. The presence of virus particles triggers the formation of a "sandwich" complex composed of the gold nanoparticle construct, virus, and an antibody-functionalized magnetic particle used for extraction. After extraction, DNA tags are released by heating to 95°C and detected via real-time PCR. The limit of detection of the assay was compared with ELISA and reversion transcription (RT) PCR using RSV-infected HEp-2 cell extracts. NPA-IPCR showed an approximately 4000-fold improvement in the limit of detection compared with ELISA and a 4-fold improvement compared with viral RNA extraction followed by traditional RT-PCR. NPA-IPCR offers a viable platform for the development of early-stage diagnostics requiring an exceptionally low limit of detection.

References

  1. Nucleic Acids Res. 1999 Dec 1;27(23):4553-61 [PMID: 10556310]
  2. JAMA. 1961 May 27;176:657-63 [PMID: 13754148]
  3. Adv Clin Chem. 2005;39:239-92 [PMID: 16013674]
  4. Analyst. 2009 Aug;134(8):1548-53 [PMID: 20448919]
  5. Pediatrics. 1998 Nov;102(5):1211-6 [PMID: 9794957]
  6. Dev Biol Stand. 1975;28:389-99 [PMID: 165119]
  7. J Clin Microbiol. 2007 Feb;45(2):604-6 [PMID: 17182755]
  8. Biochem Biophys Res Commun. 2005 Aug 12;333(4):1289-94 [PMID: 15979577]
  9. Biochem Biophys Res Commun. 2007 Jun 1;357(2):391-6 [PMID: 17428442]
  10. N Engl J Med. 2005 Apr 28;352(17):1749-59 [PMID: 15858184]
  11. Virol J. 2008 Oct 13;5:116 [PMID: 18851747]
  12. Science. 1992 Oct 2;258(5079):120-2 [PMID: 1439758]
  13. Pediatrics. 1996 Jan;97(1):137-40 [PMID: 8545210]
  14. Pediatrics. 2009 Dec;124(6):1676-9 [PMID: 19948632]
  15. JAMA. 1999 Oct 20;282(15):1440-6 [PMID: 10535434]
  16. Expert Opin Med Diagn. 2007 Oct;1(2):267-88 [PMID: 23489312]
  17. Nano Lett. 2005 Apr;5(4):591-5 [PMID: 15826092]
  18. J Virol Methods. 2008 Nov;153(2):196-202 [PMID: 18722472]
  19. Nucleic Acids Res. 1993 Dec 25;21(25):6038-9 [PMID: 8290366]
  20. N Engl J Med. 2001 Jun 21;344(25):1917-28 [PMID: 11419430]
  21. J Biol Chem. 2001 Aug 24;276(34):31642-50 [PMID: 11418598]
  22. Science. 2003 Sep 26;301(5641):1884-6 [PMID: 14512622]
  23. Nucleic Acids Res. 1992 Jul 25;20(14):3791-2 [PMID: 1379361]
  24. Chem Rev. 2004 Jan;104(1):293-346 [PMID: 14719978]
  25. J Clin Microbiol. 2005 May;43(5):2356-62 [PMID: 15872266]
  26. FASEB J. 1989 Oct;3(12):2360-70 [PMID: 2676679]
  27. J Infect Dis. 1995 Feb;171(2):440-3 [PMID: 7844385]
  28. Nat Mater. 2004 May;3(5):281-2 [PMID: 15122215]
  29. Am J Epidemiol. 1969 Apr;89(4):422-34 [PMID: 4305198]
  30. J Biomed Sci Eng. 2010 May;3(5):459-469 [PMID: 20634997]
  31. Analyst. 2008 Jun;133(6):702-18 [PMID: 18493669]
  32. Clin Microbiol Rev. 2008 Oct;21(4):716-47 [PMID: 18854489]
  33. Infect Immun. 1981 Sep;33(3):779-83 [PMID: 7287181]
  34. Nucleic Acids Res. 2006 May 08;34(8):e62 [PMID: 16682441]
  35. Viral Immunol. 2004;17(2):165-81 [PMID: 15279697]
  36. Am J Epidemiol. 1969 Apr;89(4):449-63 [PMID: 4305200]
  37. Anal Chem. 2006 Dec 15;78(24):8313-8 [PMID: 17165821]
  38. Small. 2005 Aug;1(8-9):844-8 [PMID: 17193537]
  39. Am J Epidemiol. 1969 Apr;89(4):405-21 [PMID: 4305197]
  40. J Pediatr. 2003 Nov;143(5 Suppl):S112-7 [PMID: 14615709]
  41. Drugs Aging. 2005;22(7):577-87 [PMID: 16038573]

Grants

  1. EB009235/NIBIB NIH HHS
  2. R01 EB004537/NIBIB NIH HHS
  3. T32 HL007751/NHLBI NIH HHS
  4. T32 GM065086/NIGMS NIH HHS
  5. R21 EB009235/NIBIB NIH HHS

MeSH Term

Animals
Antibodies
Antigens
Base Sequence
Biosensing Techniques
Cell Extracts
Cell Line
DNA, Viral
Gold
Immunoassay
Limit of Detection
Metal Nanoparticles
Polymerase Chain Reaction
Quartz Crystal Microbalance Techniques
Reproducibility of Results
Respiratory Syncytial Viruses

Chemicals

Antibodies
Antigens
Cell Extracts
DNA, Viral
Gold

Word Cloud

Created with Highcharts 10.0.0DNAPCRassaynanoparticlevirusantibodyNPA-IPCRELISAtagusingextractionlimitdetectioncomparedtraditionalimmuno-polymerasechainreactionimmuno-PCRrecognitiontagsamplifiedamplificationrespiratorysyncytialgoldimprovementsingleeventassociatedonethreesubsequentlydescribenanoparticle-amplifiedcombinesenzyme-linkedimmunosorbent50-foldvalencesteppriordetectsRSVsurfaceproteinbound15-nmcofunctionalizedthiolatedcomplementaryhybridized76-baseDNA/antibodyratio50:1presenceparticlestriggersformation"sandwich"complexcomposedconstructantibody-functionalizedmagneticparticleusedreleasedheating95°Cdetectedviareal-timereversiontranscriptionRTRSV-infectedHEp-2cellextractsshowedapproximately4000-fold4-foldviralRNAfollowedRT-PCRoffersviableplatformdevelopmentearly-stagediagnosticsrequiringexceptionallylowDetection

Similar Articles

Cited By