The Viking viewer for connectomics: scalable multi-user annotation and summarization of large volume data sets.

J R Anderson, S Mohammed, B Grimm, B W Jones, P Koshevoy, T Tasdizen, R Whitaker, R E Marc
Author Information
  1. J R Anderson: Department of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT 84132, U.S.A. james.r.anderson@utah.edu

Abstract

Modern microscope automation permits the collection of vast amounts of continuous anatomical imagery in both two and three dimensions. These large data sets present significant challenges for data storage, access, viewing, annotation and analysis. The cost and overhead of collecting and storing the data can be extremely high. Large data sets quickly exceed an individual's capability for timely analysis and present challenges in efficiently applying transforms, if needed. Finally annotated anatomical data sets can represent a significant investment of resources and should be easily accessible to the scientific community. The Viking application was our solution created to view and annotate a 16.5 TB ultrastructural retinal connectome volume and we demonstrate its utility in reconstructing neural networks for a distinctive retinal amacrine cell class. Viking has several key features. (1) It works over the internet using HTTP and supports many concurrent users limited only by hardware. (2) It supports a multi-user, collaborative annotation strategy. (3) It cleanly demarcates viewing and analysis from data collection and hosting. (4) It is capable of applying transformations in real-time. (5) It has an easily extensible user interface, allowing addition of specialized modules without rewriting the viewer.

References

  1. J Integr Neurosci. 2002 Dec;1(2):117-28 [PMID: 15011281]
  2. J Comp Neurol. 1992 Nov 8;325(2):152-68 [PMID: 1460111]
  3. J Comp Neurol. 1990 May 15;295(3):449-66 [PMID: 2351763]
  4. Genome Biol. 2002;3(12):RESEARCH0081 [PMID: 12537570]
  5. J Microsc. 2005 Apr;218(Pt 1):52-61 [PMID: 15817063]
  6. J Struct Biol. 2008 Mar;161(3):220-31 [PMID: 18054501]
  7. Neuroimage. 2007 Mar;35(1):9-15 [PMID: 17229579]
  8. J Neurosci. 2002 Jan 15;22(2):413-27 [PMID: 11784786]
  9. Annu Rev Biochem. 2007;76:823-47 [PMID: 17243894]
  10. Trends Neurosci. 2003 Jul;26(7):360-8 [PMID: 12850432]
  11. J Neurosci Methods. 2009 Jan 30;176(2):276-89 [PMID: 18834903]
  12. Science. 1974 Oct 4;186(4158):47-9 [PMID: 4417736]
  13. PLoS Biol. 2009 Mar;7(3):e1000074 [PMID: 19855814]

Grants

  1. P01 EY014800/NEI NIH HHS
  2. EB005832/NIBIB NIH HHS
  3. R01 EY002576-34/NEI NIH HHS
  4. P30 EY014800-07/NEI NIH HHS
  5. R01 EY002576/NEI NIH HHS
  6. R01 EY015128-07/NEI NIH HHS
  7. P30 EY014800/NEI NIH HHS
  8. R01 EY02576/NEI NIH HHS
  9. T32 DC008553/NIDCD NIH HHS
  10. R01 EY015128/NEI NIH HHS
  11. R01 EB005832/NIBIB NIH HHS
  12. T32DC008553/NIDCD NIH HHS

MeSH Term

Amacrine Cells
Image Processing, Computer-Assisted
Nerve Net
Retina
Software

Word Cloud

Created with Highcharts 10.0.0datasetsannotationanalysisVikingcollectionanatomicallargepresentsignificantchallengesviewingcanapplyingeasily5retinalvolumesupportsmulti-userviewerModernmicroscopeautomationpermitsvastamountscontinuousimagerytwothreedimensionsstorageaccesscostoverheadcollectingstoringextremelyhighLargequicklyexceedindividual'scapabilitytimelyefficientlytransformsneededFinallyannotatedrepresentinvestmentresourcesaccessiblescientificcommunityapplicationsolutioncreatedviewannotate16TBultrastructuralconnectomedemonstrateutilityreconstructingneuralnetworksdistinctiveamacrinecellclassseveralkeyfeatures1worksinternetusingHTTPmanyconcurrentuserslimitedhardware2collaborativestrategy3cleanlydemarcateshosting4capabletransformationsreal-timeextensibleuserinterfaceallowingadditionspecializedmoduleswithoutrewritingconnectomics:scalablesummarization

Similar Articles

Cited By