Functional data analysis for identifying nonlinear models of gene regulatory networks.

Georg Summer, Theodore J Perkins
Author Information
  1. Georg Summer: Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. georg.summer@gmail.com

Abstract

BACKGROUND: A key problem in systems biology is estimating dynamical models of gene regulatory networks. Traditionally, this has been done using regression or other ad-hoc methods when the model is linear. More detailed, realistic modeling studies usually employ nonlinear dynamical models, which lead to computationally difficult parameter estimation problems. Functional data analysis methods, however, offer a means to simplify fitting by transforming the problem from one of matching modeled and observed dynamics to one of matching modeled and observed time derivatives-a regression problem, albeit a nonlinear one.
RESULTS: We formulate a functional data analysis approach for estimating the parameters of nonlinear dynamical models and evaluate this approach on data from two real systems, the gap gene system of Drosophila melanogaster and the synthetic IRMA network, which was created expressly as a test case for genetic network inference. We also evaluate the approach on simulated data sets generated by the GeneNetWeaver program, the basis for the annual DREAM reverse engineering challenge. We assess the accuracy with which the correct regulatory relationships within the networks are extracted, and consider alternative methods of regularization for the purpose of overfitting avoidance. We also show that the computational efficiency of the functional data analysis approach, and the decomposability of the resulting regression problem, allow us to explicitly enumerate and evaluate all possible regulator combinations for every gene. This gives deeper insight into the the relevance of different regulators or regulator combinations, and lets one check for alternative regulatory explanations.
CONCLUSIONS: Functional data analysis is a powerful approach for estimating detailed nonlinear models of gene expression dynamics, allowing efficient and accurate estimation of regulatory architecture.

References

  1. Bioinformatics. 2006 Jan 1;22(1):68-76 [PMID: 16257986]
  2. Dev Biol. 2007 May 15;305(2):695-713 [PMID: 17412320]
  3. Bioinformatics. 2004 Sep 22;20(14):2212-21 [PMID: 15059825]
  4. IET Syst Biol. 2007 Sep;1(5):306-12 [PMID: 17907680]
  5. Nature. 2004 Jul 15;430(6997):368-71 [PMID: 15254541]
  6. J Theor Biol. 2003 Jul 7;223(1):1-18 [PMID: 12782112]
  7. Pac Symp Biocomput. 2003;:17-28 [PMID: 12603014]
  8. PLoS Comput Biol. 2006 May;2(5):e51 [PMID: 16710449]
  9. Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6163-8 [PMID: 11983907]
  10. Mol Syst Biol. 2006;2:70 [PMID: 17170765]
  11. Pac Symp Biocomput. 1999;:41-52 [PMID: 10380184]
  12. Nature. 2000 Jul 13;406(6792):188-92 [PMID: 10910359]
  13. Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4781-6 [PMID: 15037758]
  14. Mol Biosyst. 2009 Dec;5(12):1569-81 [PMID: 19763341]
  15. Mech Dev. 2007 Feb;124(2):108-28 [PMID: 17196796]
  16. Comput Biol Chem. 2007 Aug;31(4):265-74 [PMID: 17631419]
  17. Genetics. 2004 Aug;167(4):1721-37 [PMID: 15342511]
  18. J Theor Biol. 1998 Jul 27;193(2):307-19 [PMID: 9714934]
  19. Phys Rev Lett. 2005 Apr 1;94(12):128701 [PMID: 15903968]
  20. Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6286-91 [PMID: 20308593]
  21. Evol Dev. 2008 May-Jun;10(3):360-74 [PMID: 18460097]
  22. PLoS One. 2010 Jan 26;5(1):e8121 [PMID: 20126643]
  23. Nat Genet. 2006 Oct;38(10):1159-65 [PMID: 16980977]
  24. Cell. 2009 Apr 3;137(1):172-81 [PMID: 19327819]
  25. J Comput Biol. 2009 Feb;16(2):229-39 [PMID: 19183003]
  26. Science. 1998 Mar 20;279(5358):1896-902 [PMID: 9506933]
  27. Trends Genet. 1992 Sep;8(9):312-6 [PMID: 1365397]

MeSH Term

Animals
Computer Simulation
Data Interpretation, Statistical
Drosophila melanogaster
Gene Expression Regulation, Fungal
Gene Regulatory Networks
Models, Genetic
Nonlinear Dynamics
Regression Analysis
Systems Biology

Word Cloud

Created with Highcharts 10.0.0datamodelsgeneregulatorynonlinearanalysisapproachproblemoneestimatingdynamicalnetworksregressionmethodsFunctionalevaluatesystemsdetailedestimationmatchingmodeledobserveddynamicsfunctionalnetworkalsoalternativeregulatorcombinationsBACKGROUND:keybiologyTraditionallydoneusingad-hocmodellinearrealisticmodelingstudiesusuallyemployleadcomputationallydifficultparameterproblemshoweveroffermeanssimplifyfittingtransformingtimederivatives-aalbeitRESULTS:formulateparameterstworealgapsystemDrosophilamelanogastersyntheticIRMAcreatedexpresslytestcasegeneticinferencesimulatedsetsgeneratedGeneNetWeaverprogrambasisannualDREAMreverseengineeringchallengeassessaccuracycorrectrelationshipswithinextractedconsiderregularizationpurposeoverfittingavoidanceshowcomputationalefficiencydecomposabilityresultingallowusexplicitlyenumeratepossibleeverygivesdeeperinsightrelevancedifferentregulatorsletscheckexplanationsCONCLUSIONS:powerfulexpressionallowingefficientaccuratearchitectureidentifying

Similar Articles

Cited By (5)