A high-resolution human contact network for infectious disease transmission.

Marcel Salathé, Maria Kazandjieva, Jung Woo Lee, Philip Levis, Marcus W Feldman, James H Jones
Author Information
  1. Marcel Salathé: Department of Biology, Stanford University, Stanford, CA 94305-5020, USA. salathe@psu.edu

Abstract

The most frequent infectious diseases in humans--and those with the highest potential for rapid pandemic spread--are usually transmitted via droplets during close proximity interactions (CPIs). Despite the importance of this transmission route, very little is known about the dynamic patterns of CPIs. Using wireless sensor network technology, we obtained high-resolution data of CPIs during a typical day at an American high school, permitting the reconstruction of the social network relevant for infectious disease transmission. At 94% coverage, we collected 762,868 CPIs at a maximal distance of 3 m among 788 individuals. The data revealed a high-density network with typical small-world properties and a relatively homogeneous distribution of both interaction time and interaction partners among subjects. Computer simulations of the spread of an influenza-like disease on the weighted contact graph are in good agreement with absentee data during the most recent influenza season. Analysis of targeted immunization strategies suggested that contact network data are required to design strategies that are significantly more effective than random immunization. Immunization strategies based on contact network data were most effective at high vaccination coverage.

References

  1. Nature. 2006 Jan 26;439(7075):462-5 [PMID: 16437114]
  2. Science. 2009 Oct 30;326(5953):729-33 [PMID: 19745114]
  3. Indoor Air. 2007 Jun;17(3):211-25 [PMID: 17542834]
  4. Nature. 2003 Jun 5;423(6940):605-6; discussion 606 [PMID: 12789329]
  5. Nature. 2001 Jun 21;411(6840):907-8 [PMID: 11418846]
  6. Emerg Infect Dis. 1999 Sep-Oct;5(5):659-71 [PMID: 10511522]
  7. Nature. 2005 Nov 17;438(7066):355-9 [PMID: 16292310]
  8. J R Soc Interface. 2008 Sep 6;5(26):1001-7 [PMID: 18319209]
  9. PLoS One. 2010 Jul 15;5(7):e11596 [PMID: 20657651]
  10. MMWR Recomm Rep. 2010 Aug 6;59(RR-8):1-62 [PMID: 20689501]
  11. Science. 2005 Aug 12;309(5737):1083-7 [PMID: 16079251]
  12. J Theor Biol. 2005 Jan 7;232(1):71-81 [PMID: 15498594]
  13. Nature. 1998 Jun 4;393(6684):440-2 [PMID: 9623998]
  14. Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15274-8 [PMID: 19706491]
  15. Lancet. 2006 Dec 23;368(9554):2211-8 [PMID: 17189032]
  16. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jul;66(1 Pt 2):016128 [PMID: 12241447]
  17. Emerg Infect Dis. 2005 Jul;11(7):1142-5 [PMID: 16022801]
  18. Lancet Infect Dis. 2007 Apr;7(4):257-65 [PMID: 17376383]
  19. Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Feb;67(2 Pt 2):026126 [PMID: 12636767]
  20. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7821-6 [PMID: 12060727]
  21. Am J Epidemiol. 1979 Jul;110(1):1-6 [PMID: 463858]
  22. BMC Public Health. 2008 Feb 14;8:61 [PMID: 18275603]
  23. Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3747-52 [PMID: 15007165]
  24. Euro Surveill. 2007 May 10;12(5):E070510.1 [PMID: 17868600]
  25. Science. 2009 Sep 25;325(5948):1705-8 [PMID: 19696313]
  26. Trends Ecol Evol. 2006 Jul;21(7):394-9 [PMID: 16815438]
  27. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jul;74(1 Pt 2):016110 [PMID: 16907154]
  28. Nature. 2006 Jul 27;442(7101):448-52 [PMID: 16642006]
  29. Nature. 2005 Sep 8;437(7056):209-14 [PMID: 16079797]
  30. N Engl J Med. 2009 Dec 31;361(27):2628-36 [PMID: 20042754]
  31. J Infect Dis. 2010 May 15;201(10):1509-16 [PMID: 20377412]
  32. Nature. 2008 Aug 14;454(7206):877-80 [PMID: 18704085]
  33. Phys Rev Lett. 2008 Aug 1;101(5):058701 [PMID: 18764435]
  34. PLoS Comput Biol. 2010 Apr 08;6(4):e1000736 [PMID: 20386735]
  35. Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4639-44 [PMID: 18332436]

Grants

  1. K01 HD051494/NICHD NIH HHS
  2. R01 GM028016/NIGMS NIH HHS
  3. 1K01HD051494/NICHD NIH HHS

MeSH Term

Communicable Disease Control
Communicable Diseases
Computer Simulation
Disease Transmission, Infectious
Female
Humans
Immunization
Influenza, Human
Male
Models, Biological
Pandemics
Schools
United States

Word Cloud

Created with Highcharts 10.0.0networkdataCPIscontactinfectioustransmissiondiseasestrategieshigh-resolutiontypicalhighcoverageamonginteractionimmunizationeffectivefrequentdiseaseshumans--andhighestpotentialrapidpandemicspread--areusuallytransmittedviadropletscloseproximityinteractionsDespiteimportanceroutelittleknowndynamicpatternsUsingwirelesssensortechnologyobtaineddayAmericanschoolpermittingreconstructionsocialrelevant94%collected762868maximaldistance3m788individualsrevealedhigh-densitysmall-worldpropertiesrelativelyhomogeneousdistributiontimepartnerssubjectsComputersimulationsspreadinfluenza-likeweightedgraphgoodagreementabsenteerecentinfluenzaseasonAnalysistargetedsuggestedrequireddesignsignificantlyrandomImmunizationbasedvaccinationhuman

Similar Articles

Cited By