A decrementing form of plasticity apparent in cerebellar learning.

Tatsuya Ohyama, Horatiu Voicu, Brian Kalmbach, Michael D Mauk
Author Information
  1. Tatsuya Ohyama: Center for Learning and Memory, The University of Texas at Austin, Austin, Texas 78712-0805, USA.

Abstract

Long-term synaptic plasticity is believed to underlie the capacity for learning and memory. In the cerebellum, for example, long-term plasticity contributes to eyelid conditioning and to learning in eye movement systems. We report evidence for a decrementing form of cerebellar plasticity as revealed by the behavioral properties of eyelid conditioning in the rabbit. We find that conditioned eyelid responses exhibit within-session changes that recover by the next day. These changes, which increase with the interstimulus interval, involve decreases in conditioned response magnitude and likelihood as well as increases in latency to onset. Within-subject comparisons show that these changes differ in magnitude depending on the type of training, arguing against motor fatigue or changes in motor pathways downstream of the cerebellum. These phenomena are also observed when stimulation of mossy fibers substitutes for the conditioned stimulus, suggesting that changes take place within the cerebellum or in downstream efferent pathways. Together, these observations suggest a plasticity mechanism in the cerebellum that is induced during training sessions and fades within 23 h. To formalize this hypothesis more specifically, we show that incorporating a short-lasting potentiation at the granule cell to Purkinje cell synapses in a computer simulation of the cerebellum reproduces these behavioral effects. We propose the working hypothesis that the presynaptic form of long-term potentiation observed at these synapses is reversed by time rather than by a corresponding long-term depression. These results demonstrate the utility of eyelid conditioning as a means to identify and characterize the rules that govern input to output transformations in the cerebellum.

References

  1. J Neurosci. 2001 Jun 1;21(11):4081-9 [PMID: 11356896]
  2. Trends Neurosci. 2009 Mar;32(3):170-7 [PMID: 19178955]
  3. J Neurosci. 2000 Feb 1;20(3):1129-41 [PMID: 10648718]
  4. Anim Learn Behav. 2002 May;30(2):96-111 [PMID: 12141139]
  5. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2662-5 [PMID: 1969639]
  6. J Exp Psychol Anim Behav Process. 2004 Oct;30(4):259-70 [PMID: 15506852]
  7. Hear Res. 1978 Oct;1(1):67-77 [PMID: 757232]
  8. Trends Neurosci. 1997 Apr;20(4):170-7 [PMID: 9106358]
  9. Annu Rev Neurosci. 1981;4:273-99 [PMID: 6784658]
  10. J Neurosci. 1999 Aug 15;19(16):7140-51 [PMID: 10436067]
  11. J Physiol. 1996 Jul 1;494 ( Pt 1):183-99 [PMID: 8814615]
  12. Neuron. 2006 Jul 6;51(1):113-23 [PMID: 16815336]
  13. J Neurosci. 1996 Aug 15;16(16):4933-48 [PMID: 8756425]
  14. Neuron. 2007 Feb 1;53(3):427-38 [PMID: 17270738]
  15. J Physiol. 1993 Aug;468:177-200 [PMID: 7504726]
  16. Neurosci Lett. 1990 Nov 13;119(2):141-4 [PMID: 2177864]
  17. Neurobiol Learn Mem. 1995 Jan;63(1):1-18 [PMID: 7663875]
  18. Behav Neural Biol. 1993 Sep;60(2):172-85 [PMID: 8117241]
  19. Nat Neurosci. 2000 Nov;3 Suppl:1178-83 [PMID: 11127835]
  20. J Neurosci. 2006 Jun 28;26(26):6935-44 [PMID: 16807323]
  21. Neuron. 2009 May 28;62(4):555-65 [PMID: 19477156]
  22. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15989-93 [PMID: 14671315]
  23. Neuron. 1996 Apr;16(4):797-803 [PMID: 8607997]
  24. Learn Mem. 2009 Jan 07;16(1):86-95 [PMID: 19144967]
  25. Neuron. 1994 Jan;12(1):117-26 [PMID: 8292357]
  26. Nat Neurosci. 2003 Oct;6(10):1048-57 [PMID: 14502290]
  27. Neuron. 2007 Jun 21;54(6):949-59 [PMID: 17582334]
  28. Neuroscience. 2009 Sep 1;162(3):732-55 [PMID: 19409234]
  29. J Neurosci. 2004 Jun 16;24(24):5623-31 [PMID: 15201335]
  30. Learn Mem. 1997 May-Jun;4(1):130-58 [PMID: 10456059]
  31. Annu Rev Neurosci. 1989;12:13-31 [PMID: 2648947]
  32. Neuron. 1993 Oct;11(4):759-69 [PMID: 8398158]
  33. Science. 1984 Jan 20;223(4633):296-9 [PMID: 6701513]
  34. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5349-53 [PMID: 3460097]
  35. J Physiol Paris. 2002 Sep-Dec;96(5-6):539-45 [PMID: 14692501]
  36. Neuropharmacology. 2008 Jan;54(1):213-8 [PMID: 17669443]
  37. Neuron. 1999 Sep;24(1):179-85 [PMID: 10677036]
  38. Neuroreport. 1995 Jun 19;6(9):1285-9 [PMID: 7669988]
  39. J Neurosci. 2000 Jul 15;20(14):5516-25 [PMID: 10884335]
  40. J Physiol. 1996 Dec 15;497 ( Pt 3):753-9 [PMID: 9003560]
  41. Neuron. 1994 Mar;12(3):457-72 [PMID: 8155315]
  42. J Physiol. 1995 Jun 1;485 ( Pt 2):419-35 [PMID: 7545231]
  43. J Physiol. 1998 Aug 1;510 ( Pt 3):845-66 [PMID: 9660898]
  44. J Neurophysiol. 2006 Feb;95(2):686-99 [PMID: 16207782]
  45. Nature. 2002 Mar 21;416(6878):330-3 [PMID: 11907580]
  46. Neuron. 2006 Oct 19;52(2):227-38 [PMID: 17046686]
  47. Learn Behav. 2005 Aug;33(3):343-62 [PMID: 16396081]
  48. Neuroscience. 1995 Feb;64(3):699-712 [PMID: 7715782]
  49. J Physiol. 1992 Nov;457:329-54 [PMID: 1338460]
  50. Annu Rev Physiol. 2002;64:355-405 [PMID: 11826273]
  51. J Physiol. 1987 Dec;394:463-80 [PMID: 2832595]
  52. Brain Res Brain Res Rev. 1996 Oct;22(3):191-228 [PMID: 8957560]
  53. J Neurosci. 2000 Sep 15;20(18):7122-30 [PMID: 10995860]
  54. Learn Mem. 2004 Sep-Oct;11(5):566-71 [PMID: 15466310]
  55. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8389-93 [PMID: 12048250]
  56. Nat Rev Neurosci. 2009 Feb;10(2):113-25 [PMID: 19145235]
  57. Annu Rev Neurosci. 2004;27:307-40 [PMID: 15217335]
  58. J Physiol. 1995 Apr 15;484 ( Pt 2):397-413 [PMID: 7602534]
  59. Behav Neurosci. 1992 Aug;106(4):657-65 [PMID: 1503658]
  60. Neurosci Lett. 1976 Dec;3(5-6):259-63 [PMID: 19604896]
  61. Annu Rev Neurosci. 2000;23:649-711 [PMID: 10845078]
  62. Neurosci Res. 2006 May;55(1):28-33 [PMID: 16472880]
  63. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1441-5 [PMID: 7877998]
  64. J Neurophysiol. 1996 Jul;76(1):255-75 [PMID: 8836223]
  65. J Neurosci. 2008 Oct 15;28(42):10549-60 [PMID: 18923031]
  66. Hippocampus. 2002;12(5):609-36 [PMID: 12440577]
  67. Nat Neurosci. 2001 May;4(5):467-75 [PMID: 11319554]
  68. Physiol Rev. 2001 Jul;81(3):1143-95 [PMID: 11427694]
  69. Trends Neurosci. 2003 Apr;26(4):222-7 [PMID: 12689774]
  70. Neuron. 2005 Nov 23;48(4):647-59 [PMID: 16301180]
  71. Synapse. 1989;3(3):225-33 [PMID: 2718098]
  72. Physiol Rev. 2004 Jan;84(1):87-136 [PMID: 14715912]
  73. Nat Neurosci. 2000 Nov;3 Suppl:1205-11 [PMID: 11127839]
  74. Exp Brain Res. 1987;67(2):299-315 [PMID: 3040457]

Grants

  1. R01 MH046904/NIMH NIH HHS
  2. R01 MH074006/NIMH NIH HHS
  3. R01 MH057051/NIMH NIH HHS
  4. R01 MH074006-05/NIMH NIH HHS
  5. MH74006/NIMH NIH HHS
  6. MH46904/NIMH NIH HHS
  7. MH57051/NIMH NIH HHS
  8. R01 MH046904-19/NIMH NIH HHS

MeSH Term

Animals
Cerebellum
Computer Simulation
Conditioning, Eyelid
Electric Stimulation
Long-Term Potentiation
Male
Nerve Fibers
Neuronal Plasticity
Rabbits

Word Cloud

Created with Highcharts 10.0.0cerebellumplasticitychangeseyelidlearninglong-termconditioningformconditioneddecrementingcerebellarbehavioralmagnitudeshowtrainingmotorpathwaysdownstreamobservedwithinhypothesispotentiationcellsynapsesLong-termsynapticbelievedunderliecapacitymemoryexamplecontributeseyemovementsystemsreportevidencerevealedpropertiesrabbitfindresponsesexhibitwithin-sessionrecovernextdayincreaseinterstimulusintervalinvolvedecreasesresponselikelihoodwellincreaseslatencyonsetWithin-subjectcomparisonsdifferdependingtypearguingfatiguephenomenaalsostimulationmossyfiberssubstitutesstimulussuggestingtakeplaceefferentTogetherobservationssuggestmechanisminducedsessionsfades23hformalizespecificallyincorporatingshort-lastinggranulePurkinjecomputersimulationreproduceseffectsproposeworkingpresynapticreversedtimerathercorrespondingdepressionresultsdemonstrateutilitymeansidentifycharacterizerulesgoverninputoutputtransformationsapparent

Similar Articles

Cited By