Olfactory learning in Drosophila.

Germain U Busto, Isaac Cervantes-Sandoval, Ronald L Davis
Author Information
  1. Germain U Busto: Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida, USA.

Abstract

Studies of olfactory learning in Drosophila have provided key insights into the brain mechanisms underlying learning and memory. One type of olfactory learning, olfactory classical conditioning, consists of learning the contingency between an odor with an aversive or appetitive stimulus. This conditioning requires the activity of molecules that can integrate the two types of sensory information, the odorant as the conditioned stimulus and the aversive or appetitive stimulus as the unconditioned stimulus, in brain regions where the neural pathways for the two stimuli intersect. Compelling data indicate that a particular form of adenylyl cyclase functions as a molecular integrator of the sensory information in the mushroom body neurons. The neuronal pathway carrying the olfactory information from the antennal lobes to the mushroom body is well described. Accumulating data now show that some dopaminergic neurons provide information about aversive stimuli and octopaminergic neurons about appetitive stimuli to the mushroom body neurons. Inhibitory inputs from the GABAergic system appear to gate olfactory information to the mushroom bodies and thus control the ability to learn about odors. Emerging data obtained by functional imaging procedures indicate that distinct memory traces form in different brain regions and correlate with different phases of memory. The results from these and other experiments also indicate that cross talk between mushroom bodies and several other brain regions is critical for memory formation.

References

  1. Mol Cell Biochem. 1995 Aug-Sep;149-150:271-8 [PMID: 8569740]
  2. J Neurosci. 2000 Apr 15;20(8):2944-53 [PMID: 10751447]
  3. Cell. 2009 Oct 16;139(2):405-15 [PMID: 19837039]
  4. Cell. 2006 Jan 13;124(1):191-205 [PMID: 16413491]
  5. Neuron. 2002 Oct 24;36(3):463-74 [PMID: 12408848]
  6. Cell. 2006 Apr 7;125(1):143-60 [PMID: 16615896]
  7. Neuron. 1996 Jun;16(6):1127-35 [PMID: 8663989]
  8. Neuron. 2007 Dec 20;56(6):1090-102 [PMID: 18093529]
  9. Proc Natl Acad Sci U S A. 1974 Mar;71(3):708-12 [PMID: 4207071]
  10. J Comp Physiol A. 1988 Jan;162(1):101-9 [PMID: 3127581]
  11. J Neurosci. 2003 Nov 19;23(33):10495-502 [PMID: 14627633]
  12. Neuron. 2010 Feb 25;65(4):516-29 [PMID: 20188656]
  13. Nat Neurosci. 2009 Jan;12(1):53-9 [PMID: 19043409]
  14. Cell. 2003 Jan 24;112(2):271-82 [PMID: 12553914]
  15. Neuron. 2007 Jan 4;53(1):103-15 [PMID: 17196534]
  16. Learn Mem. 1998 May-Jun;5(1-2):38-51 [PMID: 10454371]
  17. Neuron. 1993 Jul;11(1):1-14 [PMID: 8338661]
  18. Neuron. 2004 May 13;42(3):437-49 [PMID: 15134640]
  19. J Neurosci. 2007 Jul 18;27(29):7640-7 [PMID: 17634358]
  20. Curr Biol. 2005 Nov 8;15(21):1953-60 [PMID: 16271874]
  21. Cell. 2005 Dec 2;123(5):945-57 [PMID: 16325586]
  22. Curr Biol. 2006 Sep 5;16(17):1741-7 [PMID: 16950113]
  23. Science. 2002 Jul 19;297(5580):359-65 [PMID: 12130775]
  24. Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):198-203 [PMID: 14684832]
  25. Science. 2009 Oct 16;326(5951):395-9 [PMID: 19833960]
  26. Curr Biol. 2009 Aug 25;19(16):R700-13 [PMID: 19706282]
  27. Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12602-7 [PMID: 11675496]
  28. Cell. 2009 Oct 16;139(2):416-27 [PMID: 19837040]
  29. J Neurosci. 2007 Oct 10;27(41):11132-8 [PMID: 17928455]
  30. J Neurosci. 2008 Apr 23;28(17):4368-76 [PMID: 18434515]
  31. Neuron. 2009 Nov 25;64(4):510-21 [PMID: 19945393]
  32. Curr Biol. 2005 Sep 6;15(17):1535-47 [PMID: 16139208]
  33. J Comp Physiol A. 1985 Sep;157(2):263-77 [PMID: 3939242]
  34. J Neurosci. 2009 Jan 21;29(3):852-62 [PMID: 19158309]
  35. Curr Biol. 2005 Sep 6;15(17):1548-53 [PMID: 16139209]
  36. Science. 2001 Aug 17;293(5533):1330-3 [PMID: 11397912]
  37. Neuron. 1999 Feb;22(2):327-38 [PMID: 10069338]
  38. Development. 1999 Sep;126(18):4065-76 [PMID: 10457015]
  39. Front Neural Circuits. 2009 Jul 01;3:5 [PMID: 19597562]
  40. Science. 2001 Nov 2;294(5544):1115-7 [PMID: 11691997]
  41. Nature. 2001 May 24;411(6836):476-80 [PMID: 11373680]
  42. Neuron. 2004 Sep 30;44(1):31-48 [PMID: 15450158]
  43. Cell Tissue Res. 1992 Jan;267(1):147-67 [PMID: 1346506]
  44. Cell. 2009 Oct 2;139(1):186-98 [PMID: 19804763]
  45. Neuron. 2006 Dec 7;52(5):845-55 [PMID: 17145505]
  46. Nat Rev Neurosci. 2010 Mar;11(3):188-200 [PMID: 20145624]
  47. J Comp Neurol. 2009 Apr 20;513(6):643-67 [PMID: 19235225]
  48. Prog Brain Res. 2008;169:293-304 [PMID: 18394482]
  49. Annu Rev Neurosci. 2005;28:275-302 [PMID: 16022597]
  50. Science. 2003 Dec 5;302(5651):1765-8 [PMID: 14657498]
  51. J Neurosci. 1998 May 15;18(10):3650-8 [PMID: 9570796]
  52. J Comp Neurol. 2009 Dec 20;517(6):808-24 [PMID: 19844895]
  53. Nat Rev Neurosci. 2007 May;8(5):341-54 [PMID: 17453015]
  54. Gene Expr Patterns. 2003 May;3(2):237-45 [PMID: 12711555]
  55. Sci STKE. 2004 Feb 12;2004(220):pl6 [PMID: 14970377]
  56. J Comp Neurol. 2002 Apr 8;445(3):211-26 [PMID: 11920702]
  57. J Comp Neurol. 2006 Jan 20;494(3):460-75 [PMID: 16320256]
  58. Development. 1993 Jun;118(2):401-15 [PMID: 8223268]
  59. Nat Neurosci. 2007 Nov;10(11):1474-82 [PMID: 17922008]
  60. Cell. 2010 Apr 2;141(1):22-4 [PMID: 20371341]
  61. Biochem Soc Trans. 2009 Dec;37(Pt 6):1317-22 [PMID: 19909268]
  62. J Comp Neurol. 1988 Feb 15;268(3):400-13 [PMID: 3129458]
  63. J Neurosci. 2004 Jul 21;24(29):6507-14 [PMID: 15269261]
  64. Science. 2000 Apr 28;288(5466):672-5 [PMID: 10784450]
  65. Cell. 1992 Feb 7;68(3):479-89 [PMID: 1739965]
  66. Hippocampus. 1996;6(4):347-470 [PMID: 8915675]
  67. Science. 1994 Feb 4;263(5147):692-5 [PMID: 8303280]
  68. Cell. 1984 May;37(1):205-15 [PMID: 6327051]
  69. J Neurophysiol. 2008 Feb;99(2):734-46 [PMID: 18094099]

Grants

  1. R37 NS019904/NINDS NIH HHS
  2. NS-052351/NINDS NIH HHS
  3. R01 NS052351-01A1/NINDS NIH HHS
  4. R01 NS019904-29/NINDS NIH HHS
  5. R01 NS019904-27/NINDS NIH HHS
  6. R01 NS052351/NINDS NIH HHS
  7. R01 NS019904-26/NINDS NIH HHS
  8. NS-019904/NINDS NIH HHS
  9. R01 NS019904-28/NINDS NIH HHS
  10. R01 NS019904/NINDS NIH HHS

MeSH Term

Adenylyl Cyclases
Animals
Appetitive Behavior
Behavior, Animal
Conditioning, Classical
Dopamine
Drosophila
Drosophila Proteins
Learning
Memory
Mushroom Bodies
Olfactory Pathways
Reinforcement, Psychology
Signal Transduction
Smell
gamma-Aminobutyric Acid

Chemicals

Drosophila Proteins
gamma-Aminobutyric Acid
Adenylyl Cyclases
Rut protein, Drosophila
Dopamine

Word Cloud

Created with Highcharts 10.0.0olfactorylearninginformationmushroombrainmemorystimulusneuronsaversiveappetitiveregionsstimulidataindicatebodyDrosophilaconditioningtwosensoryformbodiesdifferentStudiesprovidedkeyinsightsmechanismsunderlyingOnetypeclassicalconsistscontingencyodorrequiresactivitymoleculescanintegratetypesodorantconditionedunconditionedneuralpathwaysintersectCompellingparticularadenylylcyclasefunctionsmolecularintegratorneuronalpathwaycarryingantennallobeswelldescribedAccumulatingnowshowdopaminergicprovideoctopaminergicInhibitoryinputsGABAergicsystemappeargatethuscontrolabilitylearnodorsEmergingobtainedfunctionalimagingproceduresdistincttracescorrelatephasesresultsexperimentsalsocrosstalkseveralcriticalformationOlfactory

Similar Articles

Cited By