Characterization of the 3D angular vestibulo-ocular reflex in C57BL6 mice.

Americo A Migliaccio, Robert Meierhofer, Charles C Della Santina
Author Information
  1. Americo A Migliaccio: Neuroscience Research Australia and the University of New South Wales, Sydney, Australia. a.migliaccio@neura.edu.au

Abstract

We characterized the three-dimensional angular vestibulo-ocular reflex (3D aVOR) of adult C57BL6 mice during static tilt testing, sinusoidal, and high-acceleration rotations and compared it with that of another lateral-eyed mammal with afoveate retinae (chinchilla) and two primate species with forward eye orientation and retinal foveae (human and squirrel monkey). Noting that visual acuity in mice is poor compared to chinchillas and even worse compared to primates, we hypothesized that the mouse 3D aVOR would be relatively low in gain (eye-velocity/head-velocity) compared to other species and would fall off for combinations of head rotation velocity and frequency for which peak-to-peak position changes fall below the minimum visual angle resolvable by mice. We also predicted that as in chinchilla, the mouse 3D aVOR would be more isotropic (eye/head velocity gain independent of head rotation axis) and better aligned with the axis of head rotation than the 3D aVOR of primates. In 12 adult C57BL6 mice, binocular 3D eye movements were measured in darkness during whole-body static tilts, 20-100°/s whole-body sinusoidal rotations (0.02-10 Hz) and acceleration steps of 3,000°/s² to a 150°/s plateau (dominant spectral content 8-12 Hz). Our results show that the mouse has a robust static tilt counter-roll response gain of ~0.35 (eye-position Δ/head-position Δ) and mid-frequency aVOR gain (~0.6-0.8), but relatively low aVOR gain for high-frequency sinusoidal head rotations and for steps of head rotation acceleration (~0.5). Due to comparatively poor static visual acuity in the mouse, a perfectly compensatory 3D aVOR would confer relatively little benefit during high-frequency, low-amplitude movements. Therefore, our data suggest that the adaptive drive for maintaining a compensatory 3D aVOR depends on the static visual acuity in different species. Like chinchillas, mice have a much more nearly isotropic 3D aVOR than do the primates for which comparable data are available. Relatively greater isotropy in lateral-eyed species without retinal foveae (e.g., mice and chinchillas in the present study) compared to forward-eyed species with retinal foveae (e.g., squirrel monkeys and humans) suggests that the parallel resting optic axes and/or radially symmetric retinal foveae of primates underlie their characteristically low 3D aVOR gain for roll head rotations.

References

  1. Vision Res. 2000;40(16):2201-9 [PMID: 10878281]
  2. Neuroscience. 2010 Jun 16;168(1):200-8 [PMID: 20303393]
  3. Brain Res. 2003 May 16;972(1-2):75-83 [PMID: 12711080]
  4. J Neurosci Methods. 2000 Jun 30;99(1-2):101-10 [PMID: 10936649]
  5. J Neurophysiol. 2004 May;91(5):2066-78 [PMID: 14724264]
  6. Vision Res. 1999 Feb;39(3):569-74 [PMID: 10341985]
  7. J Comp Neurol. 1985 Nov 8;241(2):191-209 [PMID: 4067014]
  8. Adv Otorhinolaryngol. 2002;59:106-11 [PMID: 11885649]
  9. Brain Res. 2002 Dec 27;958(2):472-87 [PMID: 12470888]
  10. Vision Res. 2001 Jul;41(16):2127-37 [PMID: 11403796]
  11. J Neurosci. 2006 Nov 8;26(45):11554-61 [PMID: 17093076]
  12. J Assoc Res Otolaryngol. 2006 Jun;7(2):151-9 [PMID: 16718609]
  13. Anat Rec A Discov Mol Cell Evol Biol. 2004 Nov;281(1):1104-10 [PMID: 15470671]
  14. Exp Brain Res. 2005 Nov;167(1):103-7 [PMID: 16041501]
  15. Exp Brain Res. 2004 Dec;159(4):433-46 [PMID: 15349709]
  16. Invest Ophthalmol Vis Sci. 2004 Dec;45(12):4611-6 [PMID: 15557474]
  17. Brain Res. 2008 Feb 8;1193:57-66 [PMID: 18178173]
  18. J Neurophysiol. 2005 Nov;94(5):3417-29 [PMID: 16033941]
  19. J Otolaryngol. 2007 Dec;36(6):315-21 [PMID: 18076840]
  20. J Assoc Res Otolaryngol. 2005 Dec;6(4):297-310 [PMID: 16235133]
  21. Am J Anat. 1984 Mar;169(3):295-313 [PMID: 6609629]
  22. Vis Neurosci. 2005 Sep-Oct;22(5):677-84 [PMID: 16332278]
  23. Invest Ophthalmol Vis Sci. 2010 Jan;51(1):623-30 [PMID: 19696183]
  24. J Neurophysiol. 2008 Aug;100(2):945-58 [PMID: 18509072]
  25. Vision Res. 2004 Dec;44(28):3411-8 [PMID: 15536009]
  26. J Neurophysiol. 2006 Mar;95(3):1588-607 [PMID: 16339008]
  27. Vision Res. 2006 Sep;46(18):2842-7 [PMID: 16647739]
  28. Audiology. 2001 Nov-Dec;40(6):313-21 [PMID: 11781044]
  29. Brain. 1998 Apr;121 ( Pt 4):699-716 [PMID: 9577395]
  30. J Assoc Res Otolaryngol. 2001 Jun;2(2):118-29 [PMID: 11550522]
  31. J Neurophysiol. 2007 Feb;97(2):1280-7 [PMID: 17005620]
  32. Genes Brain Behav. 2006 Jul;5(5):389-403 [PMID: 16879633]
  33. J Neurosci Methods. 2005 Apr 30;143(2):141-50 [PMID: 15814146]
  34. Vision Res. 2004;44(16):1857-67 [PMID: 15145680]
  35. Vision Res. 2001 Feb;41(4):495-505 [PMID: 11166052]
  36. J Acoust Soc Am. 1997 Jun;101(6):3546-53 [PMID: 9193043]
  37. J Vis. 2010 Jan 29;10(1):13.1-17 [PMID: 20143906]
  38. Ann N Y Acad Sci. 2002 Apr;956:543-5 [PMID: 11960862]
  39. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7705-10 [PMID: 9636214]
  40. Invest Ophthalmol Vis Sci. 2005 Jan;46(1):398-407 [PMID: 15623801]
  41. J Physiol. 2010 Oct 15;588(Pt 20):3855-67 [PMID: 20724359]
  42. Brain Res. 2001 Feb 2;890(2):296-305 [PMID: 11164796]
  43. J Neurophysiol. 2007 Sep;98(3):1549-65 [PMID: 17625061]

Grants

  1. R01 DC009255/NIDCD NIH HHS
  2. K08 DC006216/NIDCD NIH HHS
  3. R01-DC009255/NIDCD NIH HHS
  4. R01 DC009255-04/NIDCD NIH HHS
  5. K08 DC006216-05/NIDCD NIH HHS
  6. R01 DC002390-15/NIDCD NIH HHS
  7. R03 DC007346/NIDCD NIH HHS
  8. R01-DC002390/NIDCD NIH HHS
  9. R01 DC002390-14S1/NIDCD NIH HHS
  10. R01 DC002390/NIDCD NIH HHS
  11. R03-DC007346/NIDCD NIH HHS
  12. K08-DC006216/NIDCD NIH HHS

MeSH Term

Acceleration
Analysis of Variance
Animals
Data Interpretation, Statistical
Eye Movements
Female
Gravitation
Head Movements
Mice
Mice, Inbred C57BL
Models, Neurological
Orientation
Otolithic Membrane
Reflex, Vestibulo-Ocular
Rotation

Word Cloud

Created with Highcharts 10.0.03DaVORmicegainheadstaticcomparedspeciesrotationsretinalfoveaevisualprimatesmouserotationC57BL6sinusoidalacuitychinchillasrelativelylow~0angularvestibulo-ocularreflexadulttiltlateral-eyedchinchillaeyesquirrelpoorfallvelocityisotropicaxismovementswhole-bodyHzaccelerationstepshigh-frequencycompensatorydataegcharacterizedthree-dimensionaltestinghigh-accelerationanothermammalafoveateretinaetwoprimateforwardorientationhumanmonkeyNotingevenworsehypothesizedeye-velocity/head-velocitycombinationsfrequencypeak-to-peakpositionchangesminimumangleresolvablealsopredictedeye/headindependentbetteraligned12binocularmeasureddarknesstilts20-100°/s002-103000°/s²150°/splateaudominantspectralcontent8-12resultsshowrobustcounter-rollresponse35eye-positionΔ/head-positionΔmid-frequency6-085Duecomparativelyperfectlyconferlittlebenefitlow-amplitudeThereforesuggestadaptivedrivemaintainingdependsdifferentLikemuchnearlycomparableavailableRelativelygreaterisotropywithoutpresentstudyforward-eyedmonkeyshumanssuggestsparallelrestingopticaxesand/orradiallysymmetricunderliecharacteristicallyrollCharacterization

Similar Articles

Cited By