The effect of micrococcal nuclease digestion on nucleosome positioning data.

Ho-Ryun Chung, Ilona Dunkel, Franziska Heise, Christian Linke, Sylvia Krobitsch, Ann E Ehrenhofer-Murray, Silke R Sperling, Martin Vingron
Author Information
  1. Ho-Ryun Chung: Department of Computational Molecular Biology, MPI für Molekulare Genetik, Berlin, Germany. chung@molgen.mpg.de

Abstract

Eukaryotic genomes are packed into chromatin, whose basic repeating unit is the nucleosome. Nucleosome positioning is a widely researched area. A common experimental procedure to determine nucleosome positions involves the use of micrococcal nuclease (MNase). Here, we show that the cutting preference of MNase in combination with size selection generates a sequence-dependent bias in the resulting fragments. This strongly affects nucleosome positioning data and especially sequence-dependent models for nucleosome positioning. As a consequence we see a need to re-evaluate whether the DNA sequence is a major determinant of nucleosome positioning in vivo. More generally, our results show that data generated after MNase digestion of chromatin requires a matched control experiment in order to determine nucleosome positions.

References

  1. Genome Res. 2009 Sep;19(9):1646-54 [PMID: 19592482]
  2. J Mol Biol. 1987 Jul 20;196(2):399-411 [PMID: 3656451]
  3. Genome Res. 2008 Oct;18(10):1554-61 [PMID: 18723689]
  4. Methods Enzymol. 1999;304:376-99 [PMID: 10372372]
  5. Science. 2005 Jul 22;309(5734):626-30 [PMID: 15961632]
  6. Genome Res. 2010 Jan;20(1):90-100 [PMID: 19846608]
  7. Curr Opin Struct Biol. 2009 Feb;19(1):65-71 [PMID: 19208466]
  8. PLoS Comput Biol. 2008 Nov;4(11):e1000216 [PMID: 18989395]
  9. Nature. 2009 Mar 19;458(7236):362-6 [PMID: 19092803]
  10. Science. 1974 May 24;184(4139):868-71 [PMID: 4825889]
  11. BMC Bioinformatics. 2009 Dec 22;10:442 [PMID: 20028554]
  12. Biochemistry. 1975 Jul;14(13):2921-5 [PMID: 1148185]
  13. Biochim Biophys Acta. 1981 Nov 27;656(1):86-92 [PMID: 6272864]
  14. Nat Methods. 2009 Apr;6(4):283-9 [PMID: 19305407]
  15. Nat Genet. 2009 Apr;41(4):438-45 [PMID: 19252487]
  16. Nucleic Acids Res. 1983 Jan 25;11(2):421-39 [PMID: 6402757]
  17. Nat Struct Mol Biol. 2010 Feb;17(2):251-7 [PMID: 20118936]
  18. Nature. 2007 Mar 29;446(7135):572-6 [PMID: 17392789]
  19. J Mol Biol. 2009 Mar 13;386(5):1411-22 [PMID: 19070622]
  20. Nucleic Acids Res. 1981 Jun 25;9(12):2643-58 [PMID: 7279658]
  21. Nature. 1980 Aug 28;286(5776):854-60 [PMID: 6774262]
  22. J Mol Biol. 2004 May 7;338(4):695-709 [PMID: 15099738]
  23. Genome Res. 2008 Jul;18(7):1051-63 [PMID: 18477713]
  24. Nat Struct Mol Biol. 2009 Oct;16(10):1056-62 [PMID: 19734899]
  25. Nucleic Acids Res. 1984 Nov 26;12(22):8457-74 [PMID: 6095201]
  26. Dev Biol. 2010 Mar 15;339(2):258-66 [PMID: 19527704]
  27. Methods Enzymol. 1999;304:462-96 [PMID: 10372377]
  28. Mol Cell Biol. 1989 Apr;9(4):1721-32 [PMID: 2657404]
  29. Nat Genet. 2007 Oct;39(10):1235-44 [PMID: 17873876]
  30. Nucleic Acids Res. 2010 Jan;38(3):709-19 [PMID: 19934265]
  31. J Mol Biol. 1983 Oct 25;170(2):423-46 [PMID: 6631965]
  32. Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):17945-50 [PMID: 20921369]
  33. Nat New Biol. 1971 Jan 27;229(4):101-6 [PMID: 5283616]
  34. Nat Struct Mol Biol. 2009 Aug;16(8):847-52 [PMID: 19620965]
  35. J Biol Chem. 2002 Nov 22;277(47):44651-9 [PMID: 12244104]
  36. Nature. 2007 Dec 13;450(7172):1031-5 [PMID: 18075583]
  37. Cell. 2008 Mar 7;132(5):887-98 [PMID: 18329373]
  38. Methods Enzymol. 1999;304:612-26 [PMID: 10372385]
  39. Biochem Biophys Res Commun. 1980 Jan 29;92(2):532-9 [PMID: 6243943]
  40. PLoS Genet. 2008 Jul 25;4(7):e1000138 [PMID: 18654629]
  41. Annu Rev Biochem. 2009;78:245-71 [PMID: 19317649]
  42. Nature. 1997 Sep 18;389(6648):251-60 [PMID: 9305837]
  43. Nature. 2008 May 15;453(7193):358-62 [PMID: 18408708]
  44. Nat Biotechnol. 2007 Feb;25(2):244-8 [PMID: 17220878]
  45. Genome Res. 2007 Aug;17(8):1170-7 [PMID: 17620451]
  46. Nucleic Acids Res. 1988 Jul 25;16(14A):6677-90 [PMID: 3399412]
  47. Genome Res. 2008 Jul;18(7):1073-83 [PMID: 18550805]
  48. Nucleic Acids Res. 1981 Jun 25;9(12):2659-73 [PMID: 6269057]
  49. Nature. 2004 Sep 2;431(7004):99-104 [PMID: 15343339]
  50. Science. 2009 Jan 16;323(5912):401-4 [PMID: 19074313]

MeSH Term

Algorithms
Chromatin
Codon
Computational Biology
DNA
DNA, Fungal
Databases, Protein
Dimerization
Genome, Fungal
Micrococcal Nuclease
Nucleosomes
Pattern Recognition, Automated
Ribonuclease, Pancreatic
Saccharomyces cerevisiae
Sequence Analysis, DNA

Chemicals

Chromatin
Codon
DNA, Fungal
Nucleosomes
DNA
Ribonuclease, Pancreatic
Micrococcal Nuclease

Word Cloud

Created with Highcharts 10.0.0nucleosomepositioningMNasedatachromatindeterminepositionsmicrococcalnucleaseshowsequence-dependentdigestionEukaryoticgenomespackedwhosebasicrepeatingunitNucleosomewidelyresearchedareacommonexperimentalprocedureinvolvesusecuttingpreferencecombinationsizeselectiongeneratesbiasresultingfragmentsstronglyaffectsespeciallymodelsconsequenceseeneedre-evaluatewhetherDNAsequencemajordeterminantvivogenerallyresultsgeneratedrequiresmatchedcontrolexperimentordereffect

Similar Articles

Cited By