Comparative genomic analysis of bacteriophages specific to the channel catfish pathogen Edwardsiella ictaluri.

Abel Carrias, Timothy J Welch, Geoffrey C Waldbieser, David A Mead, Jeffery S Terhune, Mark R Liles
Author Information
  1. Abel Carrias: Department of Fisheries and Allied Aquaculture, Auburn University, USA.

Abstract

BACKGROUND: The bacterial pathogen Edwardsiella ictaluri is a primary cause of mortality in channel catfish raised commercially in aquaculture farms. Additional treatment and diagnostic regimes are needed for this enteric pathogen, motivating the discovery and characterization of bacteriophages specific to E. ictaluri.
RESULTS: The genomes of three Edwardsiella ictaluri-specific bacteriophages isolated from geographically distant aquaculture ponds, at different times, were sequenced and analyzed. The genomes for phages eiAU, eiDWF, and eiMSLS are 42.80 kbp, 42.12 kbp, and 42.69 kbp, respectively, and are greater than 95% identical to each other at the nucleotide level. Nucleotide differences were mostly observed in non-coding regions and in structural proteins, with significant variability in the sequences of putative tail fiber proteins. The genome organization of these phages exhibit a pattern shared by other Siphoviridae.
CONCLUSIONS: These E. ictaluri-specific phage genomes reveal considerable conservation of genomic architecture and sequence identity, even with considerable temporal and spatial divergence in their isolation. Their genomic homogeneity is similarly observed among E. ictaluri bacterial isolates. The genomic analysis of these phages supports the conclusion that these are virulent phages, lacking the capacity for lysogeny or expression of virulence genes. This study contributes to our knowledge of phage genomic diversity and facilitates studies on the diagnostic and therapeutic applications of these phages.

References

  1. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3188-92 [PMID: 8622911]
  2. Mol Biol Evol. 2008 Apr;25(4):762-77 [PMID: 18234706]
  3. Can J Microbiol. 1999 Sep;45(9):791-6 [PMID: 10526403]
  4. Virol J. 2007 Feb 26;4:21 [PMID: 17324288]
  5. J Mol Biol. 2005 Apr 1;347(3):523-42 [PMID: 15755448]
  6. Virology. 2009 May 25;388(1):21-30 [PMID: 19339031]
  7. J Bacteriol. 2004 Dec;186(24):8276-86 [PMID: 15576776]
  8. Virology. 2006 Apr 25;348(1):57-71 [PMID: 16457869]
  9. J Bacteriol. 2002 Aug;184(16):4529-35 [PMID: 12142423]
  10. BMC Genomics. 2010 Mar 30;11:214 [PMID: 20353581]
  11. Mol Microbiol. 2003 Jul;49(2):277-300 [PMID: 12886937]
  12. Mol Microbiol. 2001 Jan;39(2):213-22 [PMID: 11136444]
  13. Exp Biol Med (Maywood). 2006 Apr;231(4):366-77 [PMID: 16565432]
  14. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3869-73 [PMID: 7731998]
  15. Nucleic Acids Res. 1995 Jul 25;23(14):2715-23 [PMID: 7651832]
  16. Bioinformatics. 2007 Nov 1;23(21):2947-8 [PMID: 17846036]
  17. Annu Rev Microbiol. 2000;54:799-825 [PMID: 11018145]
  18. J Mol Biol. 2010 Mar 19;397(1):119-43 [PMID: 20064525]
  19. Mol Cell. 2004 Oct 8;16(1):11-21 [PMID: 15469818]
  20. J Mol Biol. 2002 Feb 22;316(3):547-61 [PMID: 11866517]
  21. Nucleic Acids Res. 1997 Mar 1;25(5):955-64 [PMID: 9023104]
  22. Curr Opin Cell Biol. 1993 Dec;5(6):977-83 [PMID: 8129951]
  23. Microbiology (Reading). 2005 Jul;151(Pt 7):2133-2140 [PMID: 16000704]
  24. J Bacteriol. 2002 Nov;184(21):6026-36 [PMID: 12374837]
  25. J Biol Chem. 1990 Apr 15;265(11):6086-91 [PMID: 2180941]
  26. Antimicrob Agents Chemother. 2008 Dec;52(12):4344-50 [PMID: 18838590]
  27. Int J Med Microbiol. 2006 Feb;296(1):5-14 [PMID: 16423684]
  28. Bioinformatics. 2005 Feb 15;21(4):537-9 [PMID: 15479716]
  29. J Appl Microbiol. 2002;93(6):1089-98 [PMID: 12452967]
  30. Mol Biol Evol. 2007 Aug;24(8):1596-9 [PMID: 17488738]
  31. J Mol Biol. 1993 Nov 5;234(1):124-39 [PMID: 8230192]
  32. Arch Immunol Ther Exp (Warsz). 1999;47(5):267-74 [PMID: 10604231]
  33. J Mol Biol. 2007 Nov 9;373(5):1098-112 [PMID: 17900620]
  34. J Bacteriol. 2004 Nov;186(21):7029-31 [PMID: 15489416]
  35. J Appl Microbiol. 2008 Dec;105(6):2133-42 [PMID: 19120659]
  36. Appl Environ Microbiol. 2008 Jul;74(13):4164-74 [PMID: 18441115]
  37. Appl Environ Microbiol. 2009 Apr;75(7):2139-47 [PMID: 19181832]
  38. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]

MeSH Term

Animals
Bacteriophages
Computational Biology
Edwardsiella ictaluri
Genome, Viral
Ictaluridae
Open Reading Frames
Phylogeny
Sequence Alignment
Viral Proteins

Chemicals

Viral Proteins

Word Cloud

Created with Highcharts 10.0.0phagesgenomicictaluripathogenEdwardsiellabacteriophagesEgenomes42kbpbacterialchannelcatfishaquaculturediagnosticspecificictaluri-specificobservedproteinsphageconsiderableanalysisBACKGROUND:primarycausemortalityraisedcommerciallyfarmsAdditionaltreatmentregimesneededentericmotivatingdiscoverycharacterizationRESULTS:threeisolatedgeographicallydistantpondsdifferenttimessequencedanalyzedeiAUeiDWFeiMSLS801269respectivelygreater95%identicalnucleotidelevelNucleotidedifferencesmostlynon-codingregionsstructuralsignificantvariabilitysequencesputativetailfibergenomeorganizationexhibitpatternsharedSiphoviridaeCONCLUSIONS:revealconservationarchitecturesequenceidentityeventemporalspatialdivergenceisolationhomogeneitysimilarlyamongisolatessupportsconclusionvirulentlackingcapacitylysogenyexpressionvirulencegenesstudycontributesknowledgediversityfacilitatesstudiestherapeuticapplicationsComparative

Similar Articles

Cited By