Involvement of p53 in cell death following cell cycle arrest and mitotic catastrophe induced by rotenone.

António Pedro Gonçalves, Valdemar Máximo, Jorge Lima, Keshav K Singh, Paula Soares, Arnaldo Videira
Author Information
  1. António Pedro Gonçalves: IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. apgoncalves@ibmc.up.pt

Abstract

In order to investigate the cell death-inducing effects of rotenone, a plant extract commonly used as a mitochondrial complex I inhibitor, we studied cancer cell lines with different genetic backgrounds. Rotenone inhibits cell growth through the induction of cell death and cell cycle arrest, associated with the development of mitotic catastrophe. The cell death inducer staurosporine potentiates the inhibition of cell growth by rotenone in a dose-dependent synergistic manner. The tumor suppressor p53 is involved in rotenone-induced cell death, since the drug treatment results in increased expression, phosphorylation and nuclear localization of the protein. The evaluation of the effects of rotenone on a p53-deficient cell line revealed that although not required for the promotion of mitotic catastrophe, functional p53 appears to be essential for the extensive cell death that occurs afterwards. Our results suggest that mitotic slippage also occurs subsequently to the rotenone-induced mitotic arrest and cells treated with the drug for a longer period become senescent. Treatment of mtDNA-depleted cells with rotenone induces cell death and cell cycle arrest as in cells containing wild-type mtDNA, but not formation of reactive oxygen species. This suggests that the effects of rotenone are not dependent from the production of reactive oxygen species. This work highlights the multiple effects of rotenone in cancer cells related to its action as an anti-mitotic drug.

References

  1. EMBO J. 1999 Dec 15;18(24):7002-10 [PMID: 10601022]
  2. Eukaryot Cell. 2010 Jun;9(6):906-14 [PMID: 20435699]
  3. Carcinogenesis. 2002 Aug;23(8):1361-7 [PMID: 12151355]
  4. Nat Med. 1995 Mar;1(3):260-6 [PMID: 7585044]
  5. J Cell Sci. 2007 Dec 1;120(Pt 23):4155-66 [PMID: 18032788]
  6. Mol Cell Biol. 1998 Feb;18(2):1055-64 [PMID: 9448003]
  7. N Engl J Med. 2009 Oct 15;361(16):1570-83 [PMID: 19828534]
  8. Exp Cell Res. 1974 Mar 30;85(1):41-6 [PMID: 4857086]
  9. J Biol Chem. 2003 Mar 7;278(10):8516-25 [PMID: 12496265]
  10. Proc Natl Acad Sci U S A. 2005 Jan 25;102(4):1065-70 [PMID: 15650047]
  11. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9363-7 [PMID: 7568133]
  12. Oncogene. 2009 Jan 22;28(3):390-400 [PMID: 18955965]
  13. Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8424-9 [PMID: 12826609]
  14. Biochim Biophys Acta. 1998 Aug 10;1366(1-2):127-37 [PMID: 9714773]
  15. J Biol Chem. 1998 Feb 6;273(6):3447-51 [PMID: 9452467]
  16. J Carcinog. 2009;8:8 [PMID: 19439913]
  17. Biochim Biophys Acta. 2009 May;1787(5):328-34 [PMID: 19413947]
  18. Biochem Biophys Res Commun. 2008 Jun 20;371(1):33-8 [PMID: 18402771]
  19. Oncogene. 2004 Apr 12;23(16):2825-37 [PMID: 15077146]
  20. FEBS J. 2007 Sep;274(18):4788-801 [PMID: 17697112]
  21. Genes Dev. 2009 Nov 1;23(21):2461-77 [PMID: 19884253]
  22. Mutat Res. 1991 Jul;263(3):173-7 [PMID: 2067557]
  23. Int J Oncol. 2001 Nov;19(5):929-39 [PMID: 11604990]
  24. Nat Rev Mol Cell Biol. 2007 Sep;8(9):729-40 [PMID: 17667954]
  25. J Cell Sci. 2009 Aug 1;122(Pt 15):2579-85 [PMID: 19625502]
  26. Cancer Lett. 1995 Aug 16;95(1-2):93-7 [PMID: 7656250]
  27. Biochem Biophys Res Commun. 2001 Dec 21;289(5):973-8 [PMID: 11741286]
  28. Genes Chromosomes Cancer. 2010 Jan;49(1):40-51 [PMID: 19787792]
  29. J Biol Chem. 2005 Oct 7;280(40):34105-12 [PMID: 16091364]
  30. EMBO Rep. 2007 Feb;8(2):188-93 [PMID: 17186027]
  31. Exp Cell Res. 1966 May;42(2):291-5 [PMID: 5941244]
  32. Mol Biol Cell. 2004 Aug;15(8):3751-7 [PMID: 15181149]
  33. Hum Mutat. 2007 Jun;28(6):622-9 [PMID: 17311302]
  34. Nature. 1999 Jul 1;400(6739):81-3 [PMID: 10403253]
  35. Mol Biol Cell. 2001 May;12(5):1315-28 [PMID: 11359924]
  36. Cell Death Differ. 2008 Jul;15(7):1153-62 [PMID: 18404154]
  37. Cell. 2000 Jan 7;100(1):57-70 [PMID: 10647931]
  38. Pharmacol Rev. 2006 Sep;58(3):621-81 [PMID: 16968952]
  39. J Hum Genet. 2009 Nov;54(11):647-54 [PMID: 19763141]
  40. Thyroid. 2007 Aug;17(8):707-15 [PMID: 17725429]
  41. Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):15136-41 [PMID: 18812510]
  42. Oncogene. 2005 Jul 14;24(30):4765-77 [PMID: 15870702]
  43. Cell Death Differ. 2009 Jan;16(1):3-11 [PMID: 18846107]

Grants

  1. R01 CA121904/NCI NIH HHS
  2. R01 CA121904-07A1/NCI NIH HHS

MeSH Term

Antineoplastic Agents, Phytogenic
Cell Cycle
Cell Death
Cell Line, Tumor
Cell Proliferation
Cellular Senescence
Drug Synergism
Enzyme Inhibitors
Fabaceae
Humans
Mitochondria
Mitosis
Reactive Oxygen Species
Rotenone
Staurosporine
Thyroid Neoplasms
Tumor Suppressor Protein p53
Uncoupling Agents

Chemicals

Antineoplastic Agents, Phytogenic
Enzyme Inhibitors
Reactive Oxygen Species
Tumor Suppressor Protein p53
Uncoupling Agents
Rotenone
Staurosporine

Word Cloud

Created with Highcharts 10.0.0cellrotenonedeathmitoticeffectsarrestcellscyclecatastrophep53drugcancergrowthrotenone-inducedresultsoccursreactiveoxygenspeciesorderinvestigatedeath-inducingplantextractcommonlyusedmitochondrialcomplexinhibitorstudiedlinesdifferentgeneticbackgroundsRotenoneinhibitsinductionassociateddevelopmentinducerstaurosporinepotentiatesinhibitiondose-dependentsynergisticmannertumorsuppressorinvolvedsincetreatmentincreasedexpressionphosphorylationnuclearlocalizationproteinevaluationp53-deficientlinerevealedalthoughrequiredpromotionfunctionalappearsessentialextensiveafterwardssuggestslippagealsosubsequentlytreatedlongerperiodbecomesenescentTreatmentmtDNA-depletedinducescontainingwild-typemtDNAformationsuggestsdependentproductionworkhighlightsmultiplerelatedactionanti-mitoticInvolvementfollowinginduced

Similar Articles

Cited By