Patterns and regulation of ribosomal RNA transcription in Borrelia burgdorferi.

Julia V Bugrysheva, Henry P Godfrey, Ira Schwartz, Felipe C Cabello
Author Information
  1. Julia V Bugrysheva: Department of Microbiology and Immunology, Basic Science Building, New York Medical College, Valhalla, NY 10595, USA.

Abstract

BACKGROUND: Borrelia burgdorferi contains one 16S and two tandem sets of 23S-5S ribosomal (r) RNA genes whose patterns of transcription and regulation are unknown but are likely to be critical for survival and persistence in its hosts.
RESULTS: RT-PCR of B. burgdorferi N40 and B31 revealed three rRNA region transcripts: 16S rRNA-alanine transfer RNA (tRNA Ala); tRNA Ile; and both sets of 23S-5S rRNA. At 34°C, there were no differences in growth rate or in accumulation of total protein, DNA and RNA in B31 cultured in Barbour-Stoenner-Kelly (BSK)-H whether rabbit serum was present or not. At 23°C, B31 grew more slowly in serum-containing BSK-H than at 34°C. DNA per cell was higher in cells in exponential as compared to stationary phase at either temperature; protein per cell was similar at both temperatures in both phases. Similar amounts of rRNA were produced in exponential phase at both temperatures, and rRNA was down-regulated in stationary phase at either temperature. Interestingly, a rel Bbu deletion mutant unable to generate (p)ppGpp did not down-regulate rRNA at transition to stationary phase in serum-containing BSK-H at 34°C, similar to the relaxed phenotype of E. coli relA mutants.
CONCLUSIONS: We conclude that rRNA transcription in B. burgdorferi is complex and regulated both by growth phase and by the stringent response but not by temperature-modulated growth rate.

References

  1. J Bacteriol. 2007 Sep;189(17):6140-7 [PMID: 17616600]
  2. Infect Immun. 1999 Jan;67(1):30-5 [PMID: 9864192]
  3. J Bacteriol. 1997 Nov;179(22):6949-58 [PMID: 9371439]
  4. Science. 1998 Jul 17;281(5375):375-88 [PMID: 9665876]
  5. Infect Immun. 2002 Jun;70(6):3061-7 [PMID: 12010998]
  6. Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1562-7 [PMID: 11830671]
  7. J Clin Microbiol. 1995 Sep;33(9):2427-34 [PMID: 7494041]
  8. Mol Microbiol. 2000 Sep;37(6):1470-9 [PMID: 10998177]
  9. J Bacteriol. 1956 Mar;71(3):318-23 [PMID: 13306702]
  10. PLoS One. 2008 Mar 12;3(3):e1771 [PMID: 18335046]
  11. Cell. 2004 Aug 6;118(3):311-22 [PMID: 15294157]
  12. Nature. 1997 Dec 11;390(6660):580-6 [PMID: 9403685]
  13. Infect Immun. 2005 Aug;73(8):4972-81 [PMID: 16041012]
  14. J Bacteriol. 2004 Apr;186(7):2164-72 [PMID: 15028702]
  15. J Bacteriol. 1989 Nov;171(11):5763-7 [PMID: 2808297]
  16. Nucleic Acids Res. 2004 Nov 16;32(20):6038-46 [PMID: 15547252]
  17. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2909-13 [PMID: 7708747]
  18. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  19. J Bacteriol. 1995 Jul;177(14):4152-6 [PMID: 7608093]
  20. J Clin Invest. 2004 Apr;113(8):1093-101 [PMID: 15085185]
  21. J Gen Microbiol. 1958 Dec;19(3):592-606 [PMID: 13611202]
  22. J Biol Chem. 1971 Jul 25;246(14):4381-5 [PMID: 4937124]
  23. Infect Dis Clin North Am. 2008 Jun;22(2):217-34, v [PMID: 18452798]
  24. Mol Microbiol. 1999 Apr;32(2):437-45 [PMID: 10231498]
  25. Curr Opin Microbiol. 2003 Apr;6(2):151-6 [PMID: 12732305]
  26. J Bacteriol. 1992 Jun;174(11):3757-65 [PMID: 1350586]
  27. Methods Biochem Anal. 1954;1:287-305 [PMID: 13193533]
  28. J Bacteriol. 2003 Feb;185(3):957-65 [PMID: 12533471]
  29. Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5646-51 [PMID: 15064399]
  30. J Bacteriol. 2003 Oct;185(20):6185-91 [PMID: 14526030]
  31. BMC Biol. 2006 Sep 05;4:30 [PMID: 16953894]
  32. Proc Natl Acad Sci U S A. 2005 May 31;102(22):7823-8 [PMID: 15899978]
  33. Gene. 1994 Aug 19;146(1):57-65 [PMID: 7520403]
  34. FEMS Microbiol Rev. 2003 Oct;27(4):493-504 [PMID: 14550942]
  35. Am J Trop Med Hyg. 1995 Oct;53(4):397-404 [PMID: 7485694]
  36. Curr Opin Microbiol. 2008 Apr;11(2):100-5 [PMID: 18359660]
  37. Annu Rev Microbiol. 2008;62:35-51 [PMID: 18454629]
  38. Trends Microbiol. 2006 Jan;14(1):45-54 [PMID: 16343907]
  39. Infect Immun. 1995 Nov;63(11):4535-9 [PMID: 7591099]
  40. Infect Immun. 2004 Nov;72(11):6702-6 [PMID: 15501807]
  41. Gene. 2005 Aug 29;357(1):63-72 [PMID: 16023305]
  42. Infect Immun. 2003 Sep;71(9):5042-55 [PMID: 12933847]
  43. J Bacteriol. 1973 Jan;113(1):178-82 [PMID: 4569401]
  44. Microbiology (Reading). 1994 Apr;140 ( Pt 4):857-60 [PMID: 7516796]
  45. Conn Med. 1989 Jun;53(6):343-6 [PMID: 2667888]
  46. Infect Immun. 2001 Jun;69(6):4159-63 [PMID: 11349092]
  47. Nature. 2003 Apr 24;422(6934):888-93 [PMID: 12712204]

Grants

  1. R01 AI043063/NIAID NIH HHS
  2. R01 AI043063-09/NIAID NIH HHS
  3. AI 48856/NIAID NIH HHS

MeSH Term

Animals
Borrelia burgdorferi
Culture Media
DNA, Bacterial
DNA, Ribosomal
Escherichia coli
Gene Expression Regulation, Bacterial
Genes, rRNA
Molecular Sequence Data
Polymerase Chain Reaction
RNA, Bacterial
RNA, Ribosomal, 16S
RNA, Ribosomal, 23S
RNA, Ribosomal, 5S
RNA, Transfer, Ala
Rabbits
Transcription, Genetic

Chemicals

Culture Media
DNA, Bacterial
DNA, Ribosomal
RNA, Bacterial
RNA, Ribosomal, 16S
RNA, Ribosomal, 23S
RNA, Ribosomal, 5S
RNA, Transfer, Ala

Word Cloud

Created with Highcharts 10.0.0rRNAphaseburgdorferiRNAtranscriptionB3134°CgrowthstationaryBorrelia16Ssets23S-5SribosomalregulationBtRNArateproteinDNAserum-containingBSK-HpercellexponentialeithertemperaturesimilartemperaturesBACKGROUND:containsonetwotandemrgeneswhosepatternsunknownlikelycriticalsurvivalpersistencehostsRESULTS:RT-PCRN40revealedthreeregiontranscripts:rRNA-alaninetransferAlaIledifferencesaccumulationtotalculturedBarbour-Stoenner-KellyBSK-Hwhetherrabbitserumpresent23°CgrewslowlyhighercellscomparedphasesSimilaramountsproduceddown-regulatedInterestinglyrelBbudeletionmutantunablegeneratepppGppdown-regulatetransitionrelaxedphenotypeEcolirelAmutantsCONCLUSIONS:concludecomplexregulatedstringentresponsetemperature-modulatedPatterns

Similar Articles

Cited By