Dynamic and structural signatures of lamellar actomyosin force generation.

Yvonne Aratyn-Schaus, Patrick W Oakes, Margaret L Gardel
Author Information
  1. Yvonne Aratyn-Schaus: Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.

Abstract

The regulation of cellular traction forces on the extracellular matrix is critical to cell adhesion, migration, proliferation, and differentiation. Diverse lamellar actin organizations ranging from contractile lamellar networks to stress fibers are observed in adherent cells. Although lamellar organization is thought to reflect the extent of cellular force generation, understanding of the physical behaviors of the lamellar actin cytoskeleton is lacking. To elucidate these properties, we visualized the actomyosin dynamics and organization in U2OS cells over a broad range of forces. At low forces, contractile lamellar networks predominate and force generation is strongly correlated to actomyosin retrograde flow dynamics with nominal change in organization. Lamellar networks build ∼60% of cellular tension over rapid time scales. At high forces, reorganization of the lamellar network into stress fibers results in moderate changes in cellular tension over slower time scales. As stress fibers build and tension increases, myosin band spacing decreases and α-actinin bands form. On soft matrices, force generation by lamellar networks is unaffected, whereas tension-dependent stress fiber assembly is abrogated. These data elucidate the dynamic and structural signatures of the actomyosin cytoskeleton at different levels of tension and set a foundation for quantitative models of cell and tissue mechanics.

References

  1. J Cell Biol. 1996 Jun;133(6):1403-15 [PMID: 8682874]
  2. Nat Cell Biol. 2001 May;3(5):466-72 [PMID: 11331874]
  3. Genes Cells. 2007 May;12(5):623-38 [PMID: 17535253]
  4. Mol Biol Cell. 2004 Jul;15(7):3497-508 [PMID: 15133124]
  5. Nat Rev Mol Cell Biol. 2009 Jan;10(1):21-33 [PMID: 19197329]
  6. Nature. 1995 Nov 9;378(6553):209-12 [PMID: 7477328]
  7. Biophys J. 1997 Apr;72(4):1767-79 [PMID: 9083681]
  8. Science. 2007 Jan 5;315(5808):111-5 [PMID: 17204653]
  9. J Cell Biol. 2010 Jan 25;188(2):287-97 [PMID: 20100912]
  10. J Microsc. 2008 Sep;231(3):446-54 [PMID: 18755000]
  11. J Cell Biol. 1997 Oct 20;139(2):397-415 [PMID: 9334344]
  12. Science. 2005 Nov 18;310(5751):1139-43 [PMID: 16293750]
  13. Biophys J. 2009 Oct 7;97(7):1853-63 [PMID: 19804715]
  14. Nat Cell Biol. 2008 Sep;10(9):1062-8 [PMID: 19160486]
  15. Biophys J. 2008 Jan 1;94(1):207-20 [PMID: 17827246]
  16. J Cell Sci. 1997 Aug;110 ( Pt 15):1693-704 [PMID: 9264457]
  17. J Cell Biol. 1975 Oct;67(1):72-92 [PMID: 240861]
  18. Nat Phys. 2010 Jun 1;6(6):468-473 [PMID: 20563235]
  19. Biochemistry. 2005 Jan 18;44(2):584-8 [PMID: 15641783]
  20. Science. 2003 Mar 14;299(5613):1743-7 [PMID: 12637748]
  21. J Microsc. 2005 Dec;220(Pt 3):150-67 [PMID: 16363999]
  22. PLoS One. 2008 Sep 18;3(9):e3234 [PMID: 18800171]
  23. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1484-9 [PMID: 12552122]
  24. Arch Biochem Biophys. 2006 Dec 15;456(2):224-31 [PMID: 17094935]
  25. Phys Biol. 2006 Jun 21;3(2):130-7 [PMID: 16829699]
  26. Annu Rev Cell Dev Biol. 2010;26:315-33 [PMID: 19575647]
  27. J Cell Biol. 1995 Nov;131(4):989-1002 [PMID: 7490299]
  28. Biophys J. 2008 Oct;95(7):3488-96 [PMID: 18599642]
  29. J Cell Biol. 1994 Dec;127(6 Pt 2):1957-64 [PMID: 7806573]
  30. Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9660-5 [PMID: 15210979]
  31. J Cell Biol. 2008 Dec 15;183(6):999-1005 [PMID: 19075110]
  32. Nat Rev Mol Cell Biol. 2010 Sep;11(9):633-43 [PMID: 20729930]
  33. Biochem Soc Symp. 1999;65:173-205 [PMID: 10320939]
  34. Curr Biol. 2010 Jul 13;20(13):1145-53 [PMID: 20541412]
  35. Cell Motil Cytoskeleton. 2005 Jan;60(1):24-34 [PMID: 15573414]
  36. Cell. 2004 Feb 6;116(3):431-43 [PMID: 15016377]
  37. Curr Opin Cell Biol. 2000 Feb;12(1):72-8 [PMID: 10679353]
  38. Nature. 1991 Jul 11;352(6331):126-31 [PMID: 2067574]
  39. Annu Rev Cell Dev Biol. 1996;12:463-518 [PMID: 8970735]
  40. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13661-5 [PMID: 9391082]
  41. J Cell Biol. 2006 May 8;173(3):383-94 [PMID: 16651381]
  42. J Cell Biol. 1993 Nov;123(3):637-52 [PMID: 8227130]
  43. Mol Biol Cell. 2007 Oct;18(10):3723-32 [PMID: 17634292]
  44. Annu Rev Cell Dev Biol. 2003;19:677-95 [PMID: 14570586]
  45. Nat Cell Biol. 2008 Sep;10(9):1039-50 [PMID: 19160484]

Grants

  1. DP1 OD003354-01/NIH HHS
  2. DP1 OD003354-02/NIH HHS
  3. DP1 OD003354-03/NIH HHS
  4. DP1 OD003354-04/NIH HHS
  5. DP1 OD003354/NIH HHS
  6. R01 GM104032/NIGMS NIH HHS
  7. DP10D00354/NCCDPHP CDC HHS

MeSH Term

Actinin
Actins
Actomyosin
Biomechanical Phenomena
Bone Neoplasms
Cell Adhesion
Cell Movement
Cell Proliferation
Extracellular Matrix
Fourier Analysis
Humans
Microscopy, Atomic Force
Microscopy, Confocal
Myosins
Osteosarcoma
Stress Fibers
Tumor Cells, Cultured

Chemicals

Actins
Actinin
Actomyosin
Myosins

Word Cloud

Created with Highcharts 10.0.0lamellarcellularforcesnetworksstressforcegenerationactomyosintensionfibersorganizationcellactincontractilecellscytoskeletonelucidatedynamicsbuildtimescalesstructuralsignaturesregulationtractionextracellularmatrixcriticaladhesionmigrationproliferationdifferentiationDiverseorganizationsrangingobservedadherentAlthoughthoughtreflectextentunderstandingphysicalbehaviorslackingpropertiesvisualizedU2OSbroadrangelowpredominatestronglycorrelatedretrogradeflownominalchangeLamellar∼60%rapidhighreorganizationnetworkresultsmoderatechangesslowerincreasesmyosinbandspacingdecreasesα-actininbandsformsoftmatricesunaffectedwhereastension-dependentfiberassemblyabrogateddatadynamicdifferentlevelssetfoundationquantitativemodelstissuemechanicsDynamic

Similar Articles

Cited By