Cross-sensory modulation of primary sensory cortex is developmentally regulated by early sensory experience.

Ayan Ghoshal, Andrew Tomarken, Ford Ebner
Author Information
  1. Ayan Ghoshal: Department of Psychology, Vanderbilt University, Nashville, Tennessee 37240, USA.

Abstract

The presence of cross-sensory influences on neuronal responses in primary sensory cortex has been observed previously using several different methods. To test this idea in rat S1 barrel cortex, we hypothesized that auditory stimuli combined with whisker stimulation ("cross-sensory" stimuli) may modify response levels to whisker stimulation. Since the brain has been shown to have a remarkable capacity to be modified by early postnatal sensory activity, manipulating postnatal sensory experiences would be predicted to alter the degree of cross-sensory interactions. To test these ideas, we raised rats with or without whisker deprivation and with or without postnatal exposure to repeated auditory clicks. We recorded extracellular responses under urethane anesthesia from barrel cortex neurons in response to principal whisker stimulation alone, to auditory click stimulation alone, or to a cross-sensory stimulus. The responses were compared statistically across different stimulus conditions and across different rearing groups. Barrel neurons did not generate action potentials in response to auditory click stimuli alone in any rearing group. However, in cross-sensory stimulus conditions the response magnitude was facilitated in the 0-15 ms post-whisker-stimulus epoch in all rearing conditions, whereas modulation of response magnitude in a later 15-30 ms post-whisker-stimulus epoch was significantly different in each rearing condition. The most significant cross-sensory effect occurred in rats that were simultaneously whisker deprived and click reared. We conclude that there is a modulatory type of cross-sensory auditory influence on normal S1 barrel cortex, which can be enhanced by early postnatal experiences.

References

  1. Trends Cogn Sci. 2006 Jun;10(6):278-85 [PMID: 16713325]
  2. J Neurophysiol. 2007 Nov;98(5):2858-67 [PMID: 17728386]
  3. Prog Brain Res. 2005;149:31-40 [PMID: 16226574]
  4. Cereb Cortex. 2004 Apr;14(4):387-403 [PMID: 15028643]
  5. Brain Res. 1983 Dec 12;288(1-2):13-9 [PMID: 6198023]
  6. J Neurophysiol. 1994 May;71(5):1702-15 [PMID: 8064343]
  7. Exp Brain Res. 1979 Jan 2;34(1):1-9 [PMID: 759217]
  8. J Neurophysiol. 2001 Mar;85(3):1078-87 [PMID: 11247978]
  9. Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2309-14 [PMID: 11842227]
  10. J Comp Neurol. 1986 Jan 15;243(3):347-62 [PMID: 2419369]
  11. J Comp Neurol. 2003 May 26;460(2):223-37 [PMID: 12687687]
  12. Neuroreport. 2005 Apr 4;16(5):419-23 [PMID: 15770144]
  13. J Neurosci Res. 2004 Dec 15;78(6):901-7 [PMID: 15495211]
  14. Exp Brain Res. 2002 Sep;146(2):161-71 [PMID: 12195518]
  15. Brain Struct Funct. 2007 Sep;212(2):121-32 [PMID: 17717687]
  16. J Neurophysiol. 2008 May;99(5):2357-68 [PMID: 18287544]
  17. Behav Brain Res. 2004 Aug 31;153(2):573-8 [PMID: 15265656]
  18. J Neurophysiol. 2005 Sep;94(3):1727-32 [PMID: 15800076]
  19. Neuroscience. 1991;40(3):735-58 [PMID: 2062440]
  20. J Comp Neurol. 2005 Apr 4;484(2):191-205 [PMID: 15736230]
  21. J Neurosci. 2005 Jul 20;25(29):6797-806 [PMID: 16033889]
  22. J Comp Neurol. 1987 Sep 15;263(3):326-46 [PMID: 2822774]
  23. Ann N Y Acad Sci. 1990;608:51-65; discussion 65-70 [PMID: 2075959]
  24. J Neurophysiol. 2005 Nov;94(5):3342-56 [PMID: 16014795]
  25. Eur J Neurosci. 2008 Jan;27(1):155-68 [PMID: 18184319]
  26. J Neurophysiol. 2003 Jan;89(1):501-12 [PMID: 12522197]
  27. Curr Biol. 1998 Mar 12;8(6):R190 [PMID: 9512426]
  28. Eur J Neurosci. 2005 Jun;21(12):3334-48 [PMID: 16026471]
  29. Neuroscience. 2004;124(3):535-47 [PMID: 14980725]
  30. Neuron. 2007 Jan 18;53(2):279-92 [PMID: 17224408]
  31. Bull Johns Hopkins Hosp. 1960 May;106:266-316 [PMID: 14433641]
  32. J Comp Neurol. 2006 Mar 1;495(1):100-12 [PMID: 16432905]
  33. J Neurophysiol. 1992 Oct;68(4):1345-58 [PMID: 1432088]
  34. J Neurophysiol. 2010 Jul;104(1):98-107 [PMID: 20427621]
  35. J Neurophysiol. 1994 May;71(5):1716-26 [PMID: 8064344]
  36. Brain Res. 1991 Dec 13;567(1):133-9 [PMID: 1726139]
  37. Exp Brain Res. 1992;91(3):484-8 [PMID: 1483520]
  38. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12663-70 [PMID: 9770543]
  39. Nature. 1987 Apr 16-22;326(6114):694-7 [PMID: 3561512]
  40. J Neurophysiol. 1999 May;81(5):2243-52 [PMID: 10322063]
  41. Nat Rev Neurosci. 2002 Jun;3(6):443-52 [PMID: 12042879]
  42. Exp Brain Res. 2010 May;202(3):725-31 [PMID: 20087577]
  43. Nature. 2009 Jun 4;459(7247):663-7 [PMID: 19396156]
  44. J Comp Neurol. 1990 Sep 8;299(2):133-50 [PMID: 2172324]
  45. Brain Res Bull. 2003 Jun 15;60(5-6):457-74 [PMID: 12787867]
  46. J Neurophysiol. 1965 Nov;28(6):1029-40 [PMID: 5883730]
  47. Neurosci Lett. 2006 Feb 27;395(1):71-5 [PMID: 16298057]
  48. Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):2167-72 [PMID: 14766982]
  49. Neuron. 2001 Aug 2;31(2):305-15 [PMID: 11502260]
  50. J Neurosci. 2009 Feb 25;29(8):2384-92 [PMID: 19244514]
  51. Exp Brain Res. 2009 Jan;192(3):343-58 [PMID: 18762928]
  52. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9777-82 [PMID: 10944237]
  53. Brain Res. 1975 Sep 23;95(2-3):211-20 [PMID: 1156872]
  54. Int J Audiol. 2007 Sep;46(9):479-93 [PMID: 17828664]

MeSH Term

Acoustic Stimulation
Action Potentials
Animals
Animals, Newborn
Conditioning, Psychological
Electroencephalography
Female
Linear Models
Male
Neurons
Physical Stimulation
Principal Component Analysis
Rats
Rats, Long-Evans
Sensory Deprivation
Somatosensory Cortex
Time Factors
Vibrissae

Word Cloud

Created with Highcharts 10.0.0cross-sensorysensorycortexauditorywhiskerresponsedifferentstimulationpostnatalrearingresponsesbarrelstimuliearlyaloneclickstimulusconditionsprimarytestS1experiencesratswithoutneuronsacrossmagnitudemspost-whisker-stimulusepochmodulationpresenceinfluencesneuronalobservedpreviouslyusingseveralmethodsidearathypothesizedcombined"cross-sensory"maymodifylevelsSincebrainshownremarkablecapacitymodifiedactivitymanipulatingpredictedalterdegreeinteractionsideasraiseddeprivationexposurerepeatedclicksrecordedextracellularurethaneanesthesiaprincipalcomparedstatisticallygroupsBarrelgenerateactionpotentialsgroupHoweverfacilitated0-15whereaslater15-30significantlyconditionsignificanteffectoccurredsimultaneouslydeprivedrearedconcludemodulatorytypeinfluencenormalcanenhancedCross-sensorydevelopmentallyregulatedexperience

Similar Articles

Cited By