Development of auditory cortical synaptic receptive fields.

Robert C Froemke, Bianca J Jones
Author Information
  1. Robert C Froemke: Molecular Neurobiology Program, the Helen and Martin Kimmel Center for Biology and Medicine/Skirball Institute for Biomolecular Medicine, Departments of Otolaryngology, Physiology and Neuroscience, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA. robert.froemke@med.nyu.edu

Abstract

The central nervous system is plastic throughout life, but is most sensitive to the statistics of the sensory environment during critical periods of early postnatal development. In the auditory cortex, various forms of acoustic experience have been found to shape the formation of receptive fields and influence the overall rate of cortical organization. The synaptic mechanisms that control cortical receptive field plasticity are beginning to be described, particularly for frequency tuning in rodent primary auditory cortex. Inhibitory circuitry plays a major role in critical period regulation, and new evidence suggests that the formation of excitatory-inhibitory balance determines the duration of critical period plasticity for auditory cortical frequency tuning. Cortical inhibition is poorly tuned in the infant brain, but becomes co-tuned with excitation in an experience-dependent manner over the first postnatal month. We discuss evidence suggesting that this may be a general feature of the developing cortex, and describe the functional implications of such transient excitatory-inhibitory imbalance.

References

  1. J Neurophysiol. 2006 Mar;95(3):1620-9 [PMID: 16319206]
  2. Nat Neurosci. 2004 Jul;7(7):719-25 [PMID: 15208632]
  3. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):11219-24 [PMID: 8855336]
  4. Neuroscience. 1991;43(2-3):307-21 [PMID: 1922775]
  5. Science. 2003 Apr 18;300(5618):498-502 [PMID: 12702879]
  6. Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9335-40 [PMID: 15961542]
  7. Nat Neurosci. 2003 Sep;6(9):981-8 [PMID: 12910241]
  8. J Neurosci. 1989 Feb;9(2):426-35 [PMID: 2563764]
  9. Nature. 2010 Apr 22;464(7292):1155-60 [PMID: 20414303]
  10. Cell. 1999 Sep 17;98(6):739-55 [PMID: 10499792]
  11. Nat Neurosci. 2001 Dec;4(12):1230-7 [PMID: 11694887]
  12. J Neurophysiol. 2004 Jul;92(1):630-43 [PMID: 14999047]
  13. Eur J Neurosci. 2007 Nov;26(9):2576-84 [PMID: 17970743]
  14. J Neurophysiol. 2008 Aug;100(2):646-56 [PMID: 18525018]
  15. Annu Rev Neurosci. 1998;21:149-86 [PMID: 9530495]
  16. Int J Dev Neurosci. 2002 Jun-Aug;20(3-5):349-57 [PMID: 12175873]
  17. Hear Res. 1988 Jul 15;34(2):127-40 [PMID: 3170355]
  18. J Neurophysiol. 2008 Jun;99(6):2998-3008 [PMID: 18417631]
  19. Brain Res. 1992 Jul 10;585(1-2):391-4 [PMID: 1511325]
  20. Nat Neurosci. 2005 Mar;8(3):372-9 [PMID: 15711543]
  21. J Neurosci. 2009 Apr 29;29(17):5456-62 [PMID: 19403813]
  22. Trends Neurosci. 2004 Jul;27(7):422-7 [PMID: 15219742]
  23. Hear Res. 2007 Jun;228(1-2):69-81 [PMID: 17321705]
  24. Prog Neurobiol. 1997 Jan;51(1):1-17 [PMID: 9044426]
  25. Eur J Neurosci. 2005 Jan;21(2):563-76 [PMID: 15673456]
  26. J Neurosci. 2008 Dec 10;28(50):13629-39 [PMID: 19074036]
  27. J Comp Neurol. 1977 May 15;173(2):289-306 [PMID: 856885]
  28. Nat Neurosci. 2001 Nov;4(11):1123-30 [PMID: 11687817]
  29. J Neurophysiol. 2007 Nov;98(5):2933-42 [PMID: 17855587]
  30. Nature. 1987 Dec 17-23;330(6149):649-52 [PMID: 2446147]
  31. Neuroscience. 2008 Jun 12;154(1):390-6 [PMID: 18304741]
  32. Nat Neurosci. 2004 Sep;7(9):974-81 [PMID: 15286790]
  33. Nat Rev Neurosci. 2005 Nov;6(11):877-88 [PMID: 16261181]
  34. Science. 1983 Sep 16;221(4616):1183-5 [PMID: 6612332]
  35. Prog Neurobiol. 2007 Jun;82(3):109-21 [PMID: 17493738]
  36. Proc Natl Acad Sci U S A. 2007 May 1;104(18):7646-51 [PMID: 17460041]
  37. J Neurophysiol. 1975 Sep;38(5):1208-16 [PMID: 1177013]
  38. Neuron. 2007 Mar 15;53(6):805-12 [PMID: 17359916]
  39. J Neurophysiol. 2007 May;97(5):3621-38 [PMID: 17376842]
  40. J Neurophysiol. 2010 May;103(5):2339-54 [PMID: 20181735]
  41. J Neurophysiol. 1988 May;59(5):1627-38 [PMID: 3385476]
  42. Science. 1998 Mar 13;279(5357):1714-8 [PMID: 9497289]
  43. J Neurophysiol. 2004 Feb;91(2):841-54 [PMID: 14534283]
  44. Brain Res Dev Brain Res. 1990 Jul 1;54(2):221-34 [PMID: 2397588]
  45. Brain Res Dev Brain Res. 1991 Jan 15;58(1):81-95 [PMID: 2015657]
  46. Hear Res. 1993 Sep;69(1-2):236-42 [PMID: 8226345]
  47. Nat Neurosci. 2009 Jun;12(6):711-7 [PMID: 19471270]
  48. J Physiol Paris. 2003 Mar-May;97(2-3):237-52 [PMID: 14766144]
  49. Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16460-5 [PMID: 16263924]
  50. J Neurophysiol. 2005 Jan;93(1):454-66 [PMID: 15342716]
  51. J Comp Neurol. 2000 Jun 19;422(1):140-57 [PMID: 10842223]
  52. Int J Audiol. 2007 Sep;46(9):460-78 [PMID: 17828663]
  53. Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4423-8 [PMID: 18332439]
  54. Annu Rev Neurosci. 2009;32:33-55 [PMID: 19400721]
  55. Nature. 2010 Jun 17;465(7300):927-31 [PMID: 20559386]
  56. Nature. 2003 Apr 3;422(6931):518-22 [PMID: 12673250]
  57. Nature. 2010 Jun 17;465(7300):932-6 [PMID: 20559387]
  58. Annu Rev Neurosci. 2002;25:51-101 [PMID: 12052904]
  59. Brain Res Dev Brain Res. 1999 Jun 2;115(2):131-44 [PMID: 10407131]
  60. J Neurosci. 2006 Jan 11;26(2):448-57 [PMID: 16407542]
  61. Neuron. 2005 Jan 6;45(1):133-45 [PMID: 15629708]
  62. Neuron. 2005 Mar 24;45(6):829-36 [PMID: 15797545]
  63. Nat Rev Neurosci. 2004 Apr;5(4):279-90 [PMID: 15034553]
  64. Hear Res. 2009 Mar;249(1-2):36-43 [PMID: 19271271]
  65. Science. 1996 Nov 15;274(5290):1133-8 [PMID: 8895456]
  66. Eur J Neurosci. 2006 Feb;23(3):780-92 [PMID: 16487158]
  67. Nature. 2007 Nov 15;450(7168):425-9 [PMID: 18004384]
  68. Can J Physiol Pharmacol. 1997 May;75(5):470-8 [PMID: 9250380]
  69. Neuron. 2002 Sep 26;36(1):9-18 [PMID: 12367501]
  70. J Neurosci. 2007 Dec 26;27(52):14326-37 [PMID: 18160640]
  71. Nat Neurosci. 2003 Nov;6(11):1216-23 [PMID: 14583754]
  72. Brain Res. 1981 Feb 9;206(1):166-71 [PMID: 7470883]
  73. J Neurosci. 2007 Jan 3;27(1):180-9 [PMID: 17202485]
  74. Nat Neurosci. 2010 Nov;13(11):1413-20 [PMID: 20953193]
  75. J Neurosci. 2010 Jan 27;30(4):1539-50 [PMID: 20107081]
  76. Neuron. 2003 Feb 20;37(4):663-80 [PMID: 12597863]
  77. Curr Opin Neurobiol. 2009 Apr;19(2):188-99 [PMID: 19535241]
  78. J Neurosci. 1986 Oct;6(10):2779-95 [PMID: 2876063]
  79. Acta Otolaryngol. 1981 Nov-Dec;92(5-6):469-80 [PMID: 7315266]
  80. Cereb Cortex. 2008 Sep;18(9):2098-108 [PMID: 18222937]
  81. PLoS Comput Biol. 2010 Jun 03;6(6):e1000797 [PMID: 20532211]
  82. Nature. 2008 Oct 30;455(7217):1198-204 [PMID: 18815592]
  83. J Neurosci. 2002 Sep 15;22(18):8084-90 [PMID: 12223562]
  84. Neuron. 2001 Aug 2;31(2):305-15 [PMID: 11502260]
  85. Nat Neurosci. 2006 Jul;9(7):932-9 [PMID: 16783369]
  86. Future Neurol. 2009 May 1;4(3):331-349 [PMID: 20161214]
  87. Hear Res. 2006 Jun-Jul;216-217:127-37 [PMID: 16874907]
  88. Genes Brain Behav. 2003 Oct;2(5):255-67 [PMID: 14606691]
  89. Neuron. 2010 Mar 11;65(5):718-31 [PMID: 20223206]
  90. Nature. 2003 Jul 10;424(6945):201-5 [PMID: 12853959]
  91. Brain Res. 1987 May;434(2):235-40 [PMID: 3555710]

Grants

  1. R00 DC009635/NIDCD NIH HHS
  2. R00 DC009635-04/NIDCD NIH HHS

MeSH Term

Animals
Auditory Cortex
Auditory Pathways
Auditory Perception
Critical Period, Psychological
Neural Inhibition
Neuronal Plasticity
Synapses