Skin cancer recognition by using a neuro-fuzzy system.

Bareqa Salah, Mohammad Alshraideh, Rasha Beidas, Ferial Hayajneh
Author Information
  1. Bareqa Salah: Division of Plastic and Reconstructive Surgery, Jordan University Hospital, Amman 11942, Jordan.

Abstract

Skin cancer is the most prevalent cancer in the light-skinned population and it is generally caused by exposure to ultraviolet light. Early detection of skin cancer has the potential to reduce mortality and morbidity. There are many diagnostic technologies and tests to diagnose skin cancer. However many of these tests are extremely complex and subjective and depend heavily on the experience of the clinician. To obviate these problems, image processing techniques, a neural network system (NN) and a fuzzy inference system were used in this study as promising modalities for detection of different types of skin cancer. The accuracy rate of the diagnosis of skin cancer by using the hierarchal neural network was 90.67% while using neuro-fuzzy system yielded a slightly higher rate of accuracy of 91.26% in diagnosis skin cancer type. The sensitivity of NN in diagnosing skin cancer was 95%, while the specificity was 88%. Skin cancer diagnosis by neuro-fuzzy system achieved sensitivity of 98% and a specificity of 89%.

Keywords

References

  1. Arch Dermatol. 2005 Nov;141(11):1388-96 [PMID: 16301386]
  2. J Med Syst. 1994 Apr;18(2):85-96 [PMID: 7964215]
  3. IEEE Trans Biomed Eng. 1999 Apr;46(4):429-39 [PMID: 10217881]
  4. Comput Biomed Res. 1995 Feb;28(1):38-52 [PMID: 7614823]
  5. Comput Biol Med. 2005 Jun;35(5):421-433 [PMID: 16136651]
  6. J Am Acad Dermatol. 1994 Dec;31(6):958-64 [PMID: 7962777]
  7. Med Phys. 2000 Jul;27(7):1509-22 [PMID: 10947254]
  8. Dermatol Surg. 2007 Oct;33(10):1158-74 [PMID: 17903149]
  9. Clin Dermatol. 2009 Jan-Feb;27(1):35-45 [PMID: 19095152]
  10. Arch Dermatol. 1997 Nov;133(11):1409-15 [PMID: 9371025]
  11. Arch Dermatol. 2001 Dec;137(12):1627-34 [PMID: 11735713]
  12. Br J Dermatol. 2003 Oct;149(4):801-9 [PMID: 14616373]
  13. Med Biol Eng Comput. 1995 Mar;33(2):223-6 [PMID: 7643666]
  14. Dermatol Surg. 2005 May;31(5):534-7 [PMID: 15962736]
  15. Med Image Anal. 2000 Sep;4(3):269-82 [PMID: 11145313]
  16. Int J Cancer. 2002 Oct 20;101(6):576-80 [PMID: 12237900]
  17. J Am Acad Dermatol. 1994 Apr;30(4):551-9 [PMID: 8157780]
  18. Phys Med Biol. 2007 May 7;52(9):2599-613 [PMID: 17440255]
  19. Stud Health Technol Inform. 2006;124:983-8 [PMID: 17108638]
  20. Melanoma Res. 1991 Nov-Dec;1(4):231-6 [PMID: 1823631]
  21. Clin Cancer Res. 2004 Mar 15;10(6):1881-6 [PMID: 15041702]
  22. BMJ. 2005 Mar 26;330(7493):724-6 [PMID: 15790646]
  23. Int J Med Inform. 1997 Oct;46(3):129-43 [PMID: 9373776]

Word Cloud

Created with Highcharts 10.0.0cancerskinsystemneuro-fuzzySkinneuraldiagnosisusingdetectionmanytestsnetworkNNfuzzyaccuracyratesensitivityspecificityprevalentlight-skinnedpopulationgenerallycausedexposureultravioletlightEarlypotentialreducemortalitymorbiditydiagnostictechnologiesdiagnoseHoweverextremelycomplexsubjectivedependheavilyexperienceclinicianobviateproblemsimageprocessingtechniquesinferenceusedstudypromisingmodalitiesdifferenttypeshierarchal9067%yieldedslightlyhigher9126%typediagnosing95%88%achieved98%89%recognitionnetworks

Similar Articles

Cited By