Losses of expected lifetime in the United States and other developed countries: methods and empirical analyses.

Vladimir M Shkolnikov, Evgeny M Andreev, Zhen Zhang, James Oeppen, James W Vaupel
Author Information
  1. Vladimir M Shkolnikov: Max Planck Institute for Demographic Research, Rostock, Germany. Shkolnikov@demogr.mpg.de

Abstract

Patterns of diversity in age at death are examined using e (†), a dispersion measure that equals the average expected lifetime lost at death. We apply two methods for decomposing differences in e (†). The first method estimates the contributions of average levels of mortality and mortality age structures. The second (and newly developed) method returns components produced by differences between age- and cause-specific mortality rates. The United States is close to England and Wales in mean life expectancy but has higher life expectancy losses and lacks mortality compression. The difference is determined by mortality age structures, whereas the role of mortality levels is minor. This is related to excess mortality at ages under 65 from various causes in the United States. Regression on 17 country-series suggests that e (†) correlates with income inequality across countries but not across time. This result can be attributed to dissimilarity between the age- and cause-of-death structures of temporal mortality reduction and intercountry mortality variation. It also suggests that factors affecting overall mortality decrease differ from those responsible for excess lifetime losses in the United States compared with other countries. The latter can be related to weaknesses of health system and other factors resulting in premature death from heart diseases, amenable causes, accidents and violence.

References

  1. JAMA. 2005 Apr 20;293(15):1861-7 [PMID: 15840860]
  2. Soc Sci Med. 2009 Mar;68(6):1114-23 [PMID: 19176269]
  3. JAMA. 2002 Oct 9;288(14):1723-7 [PMID: 12365955]
  4. Demography. 1978 Nov;15(4):621-3 [PMID: 738485]
  5. Public Health Rep. 1998 May-Jun;113(3):218-33 [PMID: 9633866]
  6. Int J Epidemiol. 2007 Jun;36(3):590-6 [PMID: 17363395]
  7. Popul Dev Rev. 2005 Jun;31(2):259-292 [PMID: 25035524]
  8. Am J Prev Med. 2004 May;26(4):294-8 [PMID: 15110055]
  9. Demography. 2003 May;40(2):201-16 [PMID: 12846129]
  10. Demography. 1999 Nov;36(4):475-95 [PMID: 10604076]
  11. Obes Rev. 2005 May;6(2):123-32 [PMID: 15836463]
  12. J Urban Health. 2003 Dec;80(4):650-7 [PMID: 14709712]
  13. Ann Am Acad Pol Soc Sci. 2002 Mar 1;580(1):172-200 [PMID: 24587489]
  14. BMJ. 1998 Oct 3;317(7163):917-21 [PMID: 9756809]
  15. Arch Intern Med. 2003 Oct 13;163(18):2146-8 [PMID: 14557211]
  16. JAMA. 1998 Mar 11;279(10):790-1 [PMID: 9508158]
  17. Lancet. 2001 Jul 21;358(9277):194-200 [PMID: 11476836]
  18. Demography. 2003 Feb;40(1):45-65 [PMID: 12647513]
  19. Soc Sci Med. 2000 Nov;51(9):1283-93 [PMID: 11037217]
  20. Milbank Q. 2004;82(1):5-99 [PMID: 15016244]
  21. J Safety Res. 2006;37(3):277-83 [PMID: 16828115]
  22. Drug Alcohol Depend. 2006 Feb 1;81(2):103-7 [PMID: 16023304]
  23. Int J Epidemiol. 2006 Feb;35(1):60-7; discussion 81-2 [PMID: 16339598]
  24. BMJ. 1996 Apr 20;312(7037):1004-7 [PMID: 8616345]
  25. MMWR Morb Mortal Wkly Rep. 2004 Mar 26;53(11):233-8 [PMID: 15041950]
  26. BMJ. 2000 Nov 4;321(7269):1124-8 [PMID: 11061736]
  27. J Aging Health. 1995 Nov;7(4):476-96 [PMID: 10165966]
  28. BMJ. 2001 May 19;322(7296):1233-6 [PMID: 11358781]
  29. Am J Public Health. 1994 Jun;84(6):938-44 [PMID: 8203690]
  30. Popul Stud (Camb). 1986 Mar;40(1):147-57 [PMID: 11611920]
  31. Am J Public Health. 1999 Jun;89(6):845-50 [PMID: 10358673]
  32. CA Cancer J Clin. 1991 May-Jun;41(3):137-45 [PMID: 1796939]
  33. Demography. 2001 May;38(2):227-51 [PMID: 11392910]
  34. BMJ. 2002 Jan 5;324(7328):13-6 [PMID: 11777797]
  35. PLoS Med. 2008 Apr 22;5(4):e66 [PMID: 18433290]
  36. Soc Sci Med. 2003 Nov;57(10):1847-61 [PMID: 14499510]
  37. Int J Epidemiol. 2006 Feb;35(1):10-2; discussion 12-4 [PMID: 16339604]
  38. Int J Epidemiol. 2010 Apr;39(2):430-8 [PMID: 20032265]
  39. Soc Sci Med. 2003 Mar;56(6):1139-53 [PMID: 12600354]
  40. JAMA. 2005 Apr 20;293(15):1918-9 [PMID: 15840868]
  41. N Engl J Med. 2005 Mar 17;352(11):1138-45 [PMID: 15784668]
  42. Demography. 2006 Nov;43(4):631-46 [PMID: 17236538]
  43. Health Aff (Millwood). 2008 Jan-Feb;27(1):58-71 [PMID: 18180480]
  44. BMJ. 2003 Nov 15;327(7424):1129 [PMID: 14615335]
  45. Bull World Health Organ. 2005 Mar;83(3):202-9 [PMID: 15798844]
  46. Demography. 1984 Feb;21(1):83-96 [PMID: 6714492]
  47. Stroke. 2003 Aug;34(8):1958-64 [PMID: 12843344]
  48. BMJ. 2002 Jan 5;324(7328):16-9 [PMID: 11777798]
  49. Soc Sci Med. 1998 May;46(9):1227-33 [PMID: 9572612]
  50. MMWR Morb Mortal Wkly Rep. 2004 Dec 3;53(47):1103-6 [PMID: 15573026]
  51. Int J Epidemiol. 2003 Jun;32(3):375-80 [PMID: 12777422]
  52. J Health Polit Policy Law. 2001 Jun;26(3):487-522 [PMID: 11430248]

MeSH Term

Adolescent
Adult
Age Distribution
Aged
Aged, 80 and over
Cause of Death
Child
Child, Preschool
Developed Countries
Female
Humans
Infant
Infant, Newborn
Life Expectancy
Male
Middle Aged
Mortality, Premature
Socioeconomic Factors
United States
Young Adult

Word Cloud

Created with Highcharts 10.0.0mortalityUnitedStatesagedeathelifetimestructuresaverageexpectedmethodsdifferencesmethodlevelsdevelopedage-lifeexpectancylossesrelatedexcesscausessuggestsacrosscountriescanfactorsPatternsdiversityexaminedusingdispersionmeasureequalslostapplytwodecomposingfirstestimatescontributionssecondnewlyreturnscomponentsproducedcause-specificratescloseEnglandWalesmeanhigherlackscompressiondifferencedeterminedwhereasroleminorages65variousRegression17country-seriescorrelatesincomeinequalitytimeresultattributeddissimilaritycause-of-deathtemporalreductionintercountryvariationalsoaffectingoveralldecreasedifferresponsiblecomparedlatterweaknesseshealthsystemresultingprematureheartdiseasesamenableaccidentsviolenceLossescountries:empiricalanalyses

Similar Articles

Cited By