Evolution of cold-tolerant fungal symbionts permits winter fungiculture by leafcutter ants at the northern frontier of a tropical ant-fungus symbiosis.

Ulrich G Mueller, Alexander S Mikheyev, Eunki Hong, Ruchira Sen, Dan L Warren, Scott E Solomon, Heather D Ishak, Mike Cooper, Jessica L Miller, Kimberly A Shaffer, Thomas E Juenger
Author Information
  1. Ulrich G Mueller: Section of Integrative Biology, University of Texas, Austin, TX 78712, USA. umueller@mail.utexas.edu

Abstract

The obligate mutualism between leafcutter ants and their Attamyces fungi originated 8 to 12 million years ago in the tropics, but extends today also into temperate regions in South and North America. The northernmost leafcutter ant Atta texana sustains fungiculture during winter temperatures that would harm the cold-sensitive Attamyces cultivars of tropical leafcutter ants. Cold-tolerance of Attamyces cultivars increases with winter harshness along a south-to-north temperature gradient across the range of A. texana, indicating selection for cold-tolerant Attamyces variants along the temperature cline. Ecological niche modeling corroborates winter temperature as a key range-limiting factor impeding northward expansion of A. texana. The northernmost A. texana populations are able to sustain fungiculture throughout winter because of their cold-adapted fungi and because of seasonal, vertical garden relocation (maintaining gardens deep in the ground in winter to protect them from extreme cold, then moving gardens to warmer, shallow depths in spring). Although the origin of leafcutter fungiculture was an evolutionary breakthrough that revolutionized the food niche of tropical fungus-growing ants, the original adaptations of this host-microbe symbiosis to tropical temperatures and the dependence on cold-sensitive fungal symbionts eventually constrained expansion into temperate habitats. Evolution of cold-tolerant fungi within the symbiosis relaxed constraints on winter fungiculture at the northern frontier of the leafcutter ant distribution, thereby expanding the ecological niche of an obligate host-microbe symbiosis.

References

  1. Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10702-6 [PMID: 16815974]
  2. Appl Environ Microbiol. 1989 Jun;55(6):1346-50 [PMID: 16347927]
  3. Ann N Y Acad Sci. 2010 Sep;1206:56-79 [PMID: 20860683]
  4. Proc Biol Sci. 2011 Oct 22;278(1721):3050-9 [PMID: 21389026]
  5. Braz J Med Biol Res. 2004 Oct;37(10):1463-72 [PMID: 15448866]
  6. Mol Ecol. 2007 Jan;16(1):209-16 [PMID: 17181732]
  7. Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17805-10 [PMID: 19805175]
  8. Mol Ecol. 1996 Feb;5(1):119-22 [PMID: 9147688]
  9. DNA Cell Biol. 2009 Aug;28(8):371-82 [PMID: 19435425]
  10. Am Nat. 2010 Jun;175(6):E126-33 [PMID: 20415533]
  11. Science. 2007 Jan 26;315(5811):513-5 [PMID: 17255511]
  12. Annu Rev Plant Biol. 2010;61:443-62 [PMID: 20192746]
  13. Oecologia. 2008 Nov;158(1):165-75 [PMID: 18668265]
  14. Mycologia. 2009 Mar-Apr;101(2):206-10 [PMID: 19397193]
  15. Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5287-8 [PMID: 18385372]
  16. Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8627-33 [PMID: 17494762]
  17. Science. 2009 Mar 6;323(5919):1347-50 [PMID: 19265021]
  18. Am Nat. 2002 Oct;160 Suppl 4:S67-98 [PMID: 18707454]
  19. PLoS One. 2010 Sep 10;5(9): [PMID: 20844760]
  20. Proc Biol Sci. 2006 Mar 7;273(1586):603-10 [PMID: 16537132]
  21. J Neurophysiol. 2010 Sep;104(3):1249-56 [PMID: 20573968]
  22. Mol Ecol Resour. 2009 Sep;9(5):1391-4 [PMID: 21564916]
  23. Mol Phylogenet Evol. 2009 Jun;51(3):427-37 [PMID: 19041407]
  24. Science. 1982 Oct 29;218(4571):443-8 [PMID: 17808529]
  25. Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5435-40 [PMID: 18362345]
  26. Annu Rev Physiol. 2010;72:127-45 [PMID: 20148670]

MeSH Term

Animals
Ants
Biological Evolution
Cold Temperature
Fungi
Seasons
Symbiosis

Word Cloud

Created with Highcharts 10.0.0winterleafcutterfungicultureantsAttamycestexanatropicalsymbiosisfungitemperaturecold-tolerantnicheobligatetemperatenorthernmostanttemperaturescold-sensitivecultivarsalongexpansiongardenshost-microbefungalsymbiontsEvolutionnorthernfrontiermutualismoriginated812millionyearsagotropicsextendstodayalsoregionsSouthNorthAmericaAttasustainsharmCold-toleranceincreasesharshnesssouth-to-northgradientacrossrangeindicatingselectionvariantsclineEcologicalmodelingcorroborateskeyrange-limitingfactorimpedingnorthwardpopulationsablesustainthroughoutcold-adaptedseasonalverticalgardenrelocationmaintainingdeepgroundprotectextremecoldmovingwarmershallowdepthsspringAlthoughoriginevolutionarybreakthroughrevolutionizedfoodfungus-growingoriginaladaptationsdependenceeventuallyconstrainedhabitatswithinrelaxedconstraintsdistributiontherebyexpandingecologicalpermitsant-fungus

Similar Articles

Cited By