Spin-orbit-coupled Bose-Einstein condensates.

Y-J Lin, K Jiménez-García, I B Spielman
Author Information
  1. Y-J Lin: Joint Quantum Institute, National Institute of Standards and Technology, University of Maryland, Gaithersburg, Maryland 20899, USA.

Abstract

Spin-orbit (SO) coupling--the interaction between a quantum particle's spin and its momentum--is ubiquitous in physical systems. In condensed matter systems, SO coupling is crucial for the spin-Hall effect and topological insulators; it contributes to the electronic properties of materials such as GaAs, and is important for spintronic devices. Quantum many-body systems of ultracold atoms can be precisely controlled experimentally, and would therefore seem to provide an ideal platform on which to study SO coupling. Although an atom's intrinsic SO coupling affects its electronic structure, it does not lead to coupling between the spin and the centre-of-mass motion of the atom. Here, we engineer SO coupling (with equal Rashba and Dresselhaus strengths) in a neutral atomic Bose-Einstein condensate by dressing two atomic spin states with a pair of lasers. Such coupling has not been realized previously for ultracold atomic gases, or indeed any bosonic system. Furthermore, in the presence of the laser coupling, the interactions between the two dressed atomic spin states are modified, driving a quantum phase transition from a spatially spin-mixed state (lasers off) to a phase-separated state (above a critical laser intensity). We develop a many-body theory that provides quantitative agreement with the observed location of the transition. The engineered SO coupling--equally applicable for bosons and fermions--sets the stage for the realization of topological insulators in fermionic neutral atom systems.

References

  1. Phys Rev Lett. 2009 Jan 30;102(4):046402 [PMID: 19257446]
  2. Phys Rev Lett. 2007 Sep 14;99(11):110403 [PMID: 17930416]
  3. Nature. 2009 Dec 3;462(7273):628-32 [PMID: 19956256]
  4. Nature. 2008 Apr 24;452(7190):970-4 [PMID: 18432240]
  5. Science. 2007 Nov 2;318(5851):766-70 [PMID: 17885096]
  6. Science. 2004 Dec 10;306(5703):1910-3 [PMID: 15539563]
  7. Phys Rev Lett. 2009 Sep 11;103(11):115301 [PMID: 19792380]
  8. Phys Rev Lett. 2005 Sep 30;95(14):146802 [PMID: 16241681]
  9. Nature. 2009 Apr 2;458(7238):610-3 [PMID: 19340077]
  10. Phys Rev Lett. 2005 Jul 1;95(1):010404 [PMID: 16090590]
  11. Phys Rev Lett. 2009 Apr 3;102(13):130401 [PMID: 19392335]
  12. Phys Rev Lett. 2010 Dec 17;105(25):255302 [PMID: 21231599]
  13. Science. 2006 Dec 15;314(5806):1757-61 [PMID: 17170299]
  14. Phys Rev Lett. 2008 Oct 17;101(16):160401 [PMID: 18999651]
  15. Phys Rev Lett. 2004 Apr 9;92(14):140403 [PMID: 15089521]

Grants

  1. 9999-NIST/Intramural NIST DOC

Word Cloud

Created with Highcharts 10.0.0couplingSOspinsystemsatomicquantumtopologicalinsulatorselectronicmany-bodyultracoldatomneutralBose-EinsteintwostateslaserslasertransitionstateSpin-orbitcoupling--theinteractionparticle'smomentum--isubiquitousphysicalcondensedmattercrucialspin-HalleffectcontributespropertiesmaterialsGaAsimportantspintronicdevicesQuantumatomscanpreciselycontrolledexperimentallythereforeseemprovideidealplatformstudyAlthoughatom'sintrinsicaffectsstructureleadcentre-of-massmotionengineerequalRashbaDresselhausstrengthscondensatedressingpairrealizedpreviouslygasesindeedbosonicsystemFurthermorepresenceinteractionsdressedmodifieddrivingphasespatiallyspin-mixedphase-separatedcriticalintensitydeveloptheoryprovidesquantitativeagreementobservedlocationengineeredcoupling--equallyapplicablebosonsfermions--setsstagerealizationfermionicSpin-orbit-coupledcondensates

Similar Articles

Cited By