In situ gelable interpenetrating double network hydrogel formulated from binary components: thiolated chitosan and oxidized dextran.

Hanwei Zhang, Aisha Qadeer, Weiliam Chen
Author Information
  1. Hanwei Zhang: Division of Wound Healing and Regenerative Medicine, Department of Surgery, New York University School of Medicine, New York, New York 10016, USA.

Abstract

In situ gelable interpenetrating double-network hydrogels composed of thiolated chitosan (Chitosan-NAC) and oxidized dextran (Odex), completely devoid of potentially cytotoxic small molecule cross-linkers and that do not require complex maneuvers or catalysis, have been formulated. The interpenetrating network structure is created by Schiff base formations and disulfide bond inter-cross-linkings through exploiting the disparity of their reaction times. Compared with the autogelable thiolated chitosan hydrogels that typically require a relatively long time span for gelation to occur, the Odex/Chitosan-NAC composition solidifies rapidly and forms a well-developed 3D network in a short time span. Compared with typical hydrogels derived from natural materials, the Odex/Chitosan-NAC hydrogels are mechanically strong and resist degradation. The cytotoxicity potential of the hydrogels was determined by an in vitro viability assay using fibroblast as a model cell, and the results reveal that the hydrogels are noncytotoxic. In parallel, in vivo results from subdermal implantation in mice models demonstrate that this hydrogel is not only highly resistant to degradation but also induces very mild tissue response.

References

  1. Biomaterials. 2009 May;30(13):2499-506 [PMID: 19167750]
  2. J Biomed Mater Res. 1994 Jul;28(7):783-9 [PMID: 8083246]
  3. Tissue Eng Part C Methods. 2010 Apr;16(2):237-47 [PMID: 19496703]
  4. Biomaterials. 2008 Oct;29(29):3960-72 [PMID: 18639928]
  5. Biomaterials. 2008 May;29(14):2153-63 [PMID: 18272215]
  6. Int J Pharm. 2008 Jan 22;347(1-2):79-85 [PMID: 17681439]
  7. Anat Rec. 2001 Aug 1;263(4):342-9 [PMID: 11500810]
  8. Biomaterials. 2004 May;25(10):1883-90 [PMID: 14738852]
  9. Biomaterials. 2003 Aug;24(19):3311-31 [PMID: 12763459]
  10. J Biomed Mater Res B Appl Biomater. 2009 Jan;88(1):150-61 [PMID: 18618466]
  11. Colloids Surf B Biointerfaces. 2010 Aug 1;79(1):142-8 [PMID: 20434318]
  12. J Biomed Mater Res. 2001;58(5):545-55 [PMID: 11505430]
  13. Biomaterials. 2008 Oct;29(29):3905-13 [PMID: 18639926]
  14. Biomaterials. 2011 Jan;32(3):890-8 [PMID: 20947157]
  15. J Pharm Pharmacol. 2008 Mar;60(3):273-81 [PMID: 18284806]
  16. Biomaterials. 2009 Mar;30(7):1348-55 [PMID: 19064285]
  17. Biomaterials. 2004 Mar-Apr;25(7-8):1339-48 [PMID: 14643608]
  18. Biomaterials. 2010 Jun;31(17):4613-9 [PMID: 20303170]
  19. Cell Tissue Res. 1990 Dec;262(3):467-81 [PMID: 1706644]
  20. Biomaterials. 2008 Apr;29(11):1713-9 [PMID: 18192002]
  21. Eur J Pharm Sci. 2008 Jan;33(1):1-8 [PMID: 17980561]
  22. Drug Dev Ind Pharm. 2005 Oct;31(9):885-93 [PMID: 16306000]
  23. J Mater Sci Mater Med. 2009 Jun;20(6):1263-71 [PMID: 19184370]
  24. J Phys Chem B. 2008 Jul 10;112(27):8024-31 [PMID: 18558754]
  25. Biomaterials. 2007 Aug;28(24):3478-88 [PMID: 17482258]
  26. J Mater Sci Mater Med. 2008 Mar;19(3):1379-87 [PMID: 17914620]
  27. Polym Adv Technol. 2008 Apr 28;19(6):647-657 [PMID: 19763189]
  28. J Control Release. 2008 Mar 20;126(3):205-16 [PMID: 18258328]
  29. Biomacromolecules. 2009 Sep 14;10(9):2652-61 [PMID: 19658412]
  30. Biomaterials. 2008 Dec;29(35):4584-91 [PMID: 18804861]
  31. J Biomed Mater Res. 2001;58(6):658-65 [PMID: 11745518]
  32. J Surg Res. 2010 Apr;159(2):772-8 [PMID: 19481223]
  33. Biomaterials. 2005 Jul;26(21):4468-75 [PMID: 15701376]
  34. Chem Rev. 2001 Jul;101(7):1869-79 [PMID: 11710233]
  35. Biomacromolecules. 2002 Nov-Dec;3(6):1304-11 [PMID: 12425669]
  36. Biomaterials. 2009 May;30(14):2826-36 [PMID: 19203791]
  37. Biomacromolecules. 2007 Apr;8(4):1109-15 [PMID: 17358076]
  38. Nature. 1997 Aug 28;388(6645):860-2 [PMID: 9278046]
  39. Biomaterials. 2001 Mar;22(6):619-26 [PMID: 11219727]
  40. Biomaterials. 2005 Aug;26(23):4737-46 [PMID: 15763253]

Grants

  1. NS070331/NINDS NIH HHS
  2. R43 NS070331-01/NINDS NIH HHS
  3. DK068401/NIDDK NIH HHS
  4. R44 NS070331/NINDS NIH HHS
  5. R43 NS070331/NINDS NIH HHS
  6. R01 DK068401/NIDDK NIH HHS

MeSH Term

Carbohydrate Sequence
Chitosan
Dextrans
Hydrogels
Magnetic Resonance Spectroscopy
Microscopy, Electron, Scanning
Molecular Sequence Data
Oxidation-Reduction

Chemicals

Dextrans
Hydrogels
Chitosan

Word Cloud

Created with Highcharts 10.0.0hydrogelsinterpenetratingthiolatedchitosannetworksitugelableoxidizeddextranrequireformulatedComparedtimespanOdex/Chitosan-NACdegradationresultshydrogeldouble-networkcomposedChitosan-NACOdexcompletelydevoidpotentiallycytotoxicsmallmoleculecross-linkerscomplexmaneuverscatalysisstructurecreatedSchiffbaseformationsdisulfidebondinter-cross-linkingsexploitingdisparityreactiontimesautogelabletypicallyrelativelylonggelationoccurcompositionsolidifiesrapidlyformswell-developed3Dshorttypicalderivednaturalmaterialsmechanicallystrongresistcytotoxicitypotentialdeterminedvitroviabilityassayusingfibroblastmodelcellrevealnoncytotoxicparallelvivosubdermalimplantationmicemodelsdemonstratehighlyresistantalsoinducesmildtissueresponsedoublebinarycomponents:

Similar Articles

Cited By