Neural correlates of audio-visual object recognition: effects of implicit spatial congruency.

Tina Plank, Katharina Rosengarth, Wookeun Song, Wolfgang Ellermeier, Mark W Greenlee
Author Information
  1. Tina Plank: Institute of Psychology, University of Regensburg, Regensburg, Germany.

Abstract

Multisensory integration assists us to identify objects by providing multiple cues with respect to object category and spatial location. We used a semantic audiovisual object matching task to determine the effect of spatial congruency on response behavior and fMRI brain activation. Fifteen subjects responded in a four-alternative response paradigm, which visual quadrant contained the object best matched to the sound presented. Realistic sounds based on head-related transfer functions were presented binaurally with the simulated sound source corresponding to one of the four quadrants. Following a random sequence, the location of the sound corresponded to the quadrant containing the semantically congruent target on half the trials, whereas on other trials the sound arose from an incongruent location. We examined the effects of spatial congruency on response latencies, hit-rates and fMRI responses. Preliminary behavioral results revealed a significant effect of spatial congruency on response latency or performance for stimuli with noise added. In the fMRI experiment, spatial congruency had a significant effect on the BOLD response. A cluster in the right middle and superior temporal gyrus was more activated when the auditory sound sources were spatially congruent with the semantically matching visual stimulus. In an exploratory post-hoc analysis, in which we correlated the BOLD signal with the subjects' ability to locate the sound sources, we found a significant cluster in the left inferior frontal cortex, where the BOLD response increased with sound-source localization performance. Thus spatial congruency appears to enhance the semantic integration of audiovisual object information in these brain regions.

References

  1. Hum Brain Mapp. 1999;7(3):213-23 [PMID: 10194620]
  2. Neuroimage. 2006 Nov 1;33(2):672-80 [PMID: 16934491]
  3. Exp Brain Res. 1983;49(1):93-115 [PMID: 6861938]
  4. Nature. 2000 Oct 19;407(6806):906-8 [PMID: 11057669]
  5. Curr Opin Neurobiol. 2003 Apr;13(2):159-66 [PMID: 12744968]
  6. Exp Brain Res. 2005 Oct;166(3-4):559-71 [PMID: 16028028]
  7. Neuroimage. 2004 Feb;21(2):725-32 [PMID: 14980575]
  8. Cereb Cortex. 2004 Jul;14(7):768-80 [PMID: 15084491]
  9. Nat Neurosci. 2002 Sep;5(9):905-9 [PMID: 12195426]
  10. Neuroimage. 2000 May;11(5 Pt 1):409-23 [PMID: 10806028]
  11. Nat Neurosci. 1999 Dec;2(12):1131-6 [PMID: 10570492]
  12. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11800-6 [PMID: 11050212]
  13. Cogn Affect Behav Neurosci. 2008 Sep;8(3):318-28 [PMID: 18814468]
  14. Neuron. 2004 Mar 4;41(5):809-23 [PMID: 15003179]
  15. Cereb Cortex. 2004 Sep;14(9):1008-21 [PMID: 15166097]
  16. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1621-5 [PMID: 2000370]
  17. Neurosci Lett. 2007 Jul 5;422(1):77-80 [PMID: 17597301]
  18. J Neurophysiol. 2009 Dec;102(6):3352-64 [PMID: 19776363]
  19. Science. 1998 Feb 27;279(5355):1347-51 [PMID: 9478894]
  20. Atten Percept Psychophys. 2009 Oct;71(7):1525-33 [PMID: 19801613]
  21. Neuropsychologia. 2003;41(3):341-56 [PMID: 12457759]
  22. J Neurophysiol. 2008 Jan;99(1):87-95 [PMID: 18003874]
  23. J Neurosci. 2004 Apr 7;24(14):3637-42 [PMID: 15071112]
  24. Prog Neurobiol. 2004 Apr;72(5):341-72 [PMID: 15157726]
  25. Curr Opin Neurobiol. 1994 Apr;4(2):157-65 [PMID: 8038571]
  26. J Cogn Neurosci. 2011 Sep;23(9):2291-308 [PMID: 20954938]
  27. J Neurophysiol. 2001 Aug;86(2):1043-6 [PMID: 11495972]
  28. J Cogn Neurosci. 2005 Sep;17(9):1396-409 [PMID: 16197693]
  29. J Comp Neurol. 1984 Sep 1;228(1):105-16 [PMID: 6480903]
  30. J Cogn Neurosci. 2006 Dec;18(12):2077-87 [PMID: 17129192]
  31. Neuropsychologia. 2007 Oct 1;45(13):2883-901 [PMID: 17675110]
  32. Cereb Cortex. 2010 Aug;20(8):1829-42 [PMID: 19923200]
  33. J Neurosci. 2010 May 26;30(21):7434-46 [PMID: 20505110]
  34. J Comp Neurol. 1992 Sep 15;323(3):341-58 [PMID: 1460107]
  35. Exp Brain Res. 1989;76(3):473-84 [PMID: 2792241]
  36. Cogn Process. 2008 Mar;9(1):29-34 [PMID: 17885775]
  37. J Neurosci. 2007 Jul 25;27(30):7881-7 [PMID: 17652579]
  38. Trends Cogn Sci. 2004 Dec;8(12):539-46 [PMID: 15556023]
  39. Brain Res. 2008 Nov 25;1242:136-50 [PMID: 18479672]
  40. Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):20045-50 [PMID: 19897723]
  41. Neuroimage. 2001 Oct;14(4):802-16 [PMID: 11554799]
  42. Exp Brain Res. 2002 Dec;147(3):332-43 [PMID: 12428141]
  43. J Acoust Soc Am. 1996 Jul;100(1):408-27 [PMID: 8675836]
  44. Neuron. 2001 Aug 2;31(2):329-38 [PMID: 11502262]
  45. Exp Brain Res. 1998 Sep;122(2):247-52 [PMID: 9776523]
  46. Proc Natl Acad Sci U S A. 2001 Oct 9;98(21):12301-6 [PMID: 11572938]
  47. Science. 1997 May 2;276(5313):821-4 [PMID: 9115211]
  48. J Neurosci. 2009 Mar 11;29(10):3259-70 [PMID: 19279263]
  49. Trends Cogn Sci. 2001 Jun 1;5(6):261-270 [PMID: 11390297]
  50. Annu Rev Psychol. 1991;42:135-59 [PMID: 2018391]
  51. Neuropsychologia. 2007 Feb 1;45(3):531-9 [PMID: 16797610]
  52. Trends Neurosci. 2005 May;28(5):264-71 [PMID: 15866201]
  53. Cereb Cortex. 2008 Oct;18(10):2439-49 [PMID: 18281303]
  54. J Neurosci. 2004 Dec 1;24(48):10941-9 [PMID: 15574744]
  55. J Comp Neurol. 1988 Oct 15;276(3):313-42 [PMID: 3192766]
  56. Neuroimage. 2005 Jun;26(2):414-25 [PMID: 15907299]
  57. Eur J Neurosci. 2007 Sep;26(6):1681-91 [PMID: 17880400]
  58. Neuroimage. 2009 Feb 1;44(3):1210-23 [PMID: 18973818]
  59. Cereb Cortex. 2001 Dec;11(12):1110-23 [PMID: 11709482]
  60. Cereb Cortex. 2008 Mar;18(3):598-609 [PMID: 17617658]

MeSH Term

Acoustic Stimulation
Adult
Auditory Perception
Brain
Brain Mapping
Female
Humans
Image Interpretation, Computer-Assisted
Magnetic Resonance Imaging
Male
Photic Stimulation
Visual Perception
Young Adult

Word Cloud

Created with Highcharts 10.0.0spatialcongruencyresponsesoundobjectlocationeffectfMRIsignificantBOLDintegrationsemanticaudiovisualmatchingbrainvisualquadrantpresentedsemanticallycongruenttrialseffectsperformanceclustersourcesMultisensoryassistsusidentifyobjectsprovidingmultiplecuesrespectcategoryusedtaskdeterminebehavioractivationFifteensubjectsrespondedfour-alternativeparadigmcontainedbestmatchedRealisticsoundsbasedhead-relatedtransferfunctionsbinaurallysimulatedsourcecorrespondingonefourquadrantsFollowingrandomsequencecorrespondedcontainingtargethalfwhereasaroseincongruentexaminedlatencieshit-ratesresponsesPreliminarybehavioralresultsrevealedlatencystimulinoiseaddedexperimentrightmiddlesuperiortemporalgyrusactivatedauditoryspatiallystimulusexploratorypost-hocanalysiscorrelatedsignalsubjects'abilitylocatefoundleftinferiorfrontalcortexincreasedsound-sourcelocalizationThusappearsenhanceinformationregionsNeuralcorrelatesaudio-visualrecognition:implicit

Similar Articles

Cited By