Engineering bi-layer nanofibrous conduits for peripheral nerve regeneration.

Yiqian Zhu, Aijun Wang, Shyam Patel, Kyle Kurpinski, Edward Diao, Xuan Bao, George Kwong, William L Young, Song Li
Author Information
  1. Yiqian Zhu: Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720-1762, USA.

Abstract

Trauma injuries often cause peripheral nerve damage and disability. A goal in neural tissue engineering is to develop synthetic nerve conduits for peripheral nerve regeneration having therapeutic efficacy comparable to that of autografts. Nanofibrous conduits with aligned nanofibers have been shown to promote nerve regeneration, but current fabrication methods rely on rolling a fibrous sheet into the shape of a conduit, which results in a graft with inconsistent size and a discontinuous joint or seam. In addition, the long-term effects of nanofibrous nerve conduits, in comparison with autografts, are still unknown. Here we developed a novel one-step electrospinning process and, for the first time, fabricated a seamless bi-layer nanofibrous nerve conduit: the luminal layer having longitudinally aligned nanofibers to promote nerve regeneration, and the outer layer having randomly organized nanofibers for mechanical support. Long-term in vivo studies demonstrated that bi-layer aligned nanofibrous nerve conduits were superior to random nanofibrous conduits and had comparable therapeutic effects to autografts for nerve regeneration. In summary, we showed that the engineered nanostructure had a significant impact on neural tissue regeneration in situ. The results from this study will also lead to the scalable fabrication of engineered nanofibrous nerve conduits with designed nanostructure. This technology platform can be combined with drug delivery and cell therapies for tissue engineering.

References

  1. Neurol Res. 2004 Mar;26(2):151-60 [PMID: 15072634]
  2. Biophys J. 2009 Apr 22;96(8):3423-32 [PMID: 19383485]
  3. J Surg Res. 1972 Apr;12(4):267-74 [PMID: 4337968]
  4. Biomaterials. 2004 Mar-Apr;25(7-8):1269-78 [PMID: 14643601]
  5. Brain Res. 1988 Apr 12;446(1):189-94 [PMID: 3370482]
  6. Microsurgery. 1989;10(2):130-3 [PMID: 2770512]
  7. J Biomater Sci Polym Ed. 2008;19(5):603-21 [PMID: 18419940]
  8. J Biomed Mater Res A. 2006 Oct;79(1):36-46 [PMID: 16758450]
  9. Biomaterials. 2004 Apr;25(9):1593-600 [PMID: 14697861]
  10. Biochem Biophys Res Commun. 2003 Aug 8;307(4):883-90 [PMID: 12878194]
  11. Annu Rev Biomed Eng. 2003;5:293-347 [PMID: 14527315]
  12. Biomaterials. 2008 Feb;29(6):653-61 [PMID: 17983651]
  13. Biomaterials. 2008 Jul;29(21):3117-27 [PMID: 18448163]
  14. J Neurocytol. 1994 Jan;23(1):1-28 [PMID: 8176415]
  15. Nano Lett. 2007 Jul;7(7):2122-8 [PMID: 17567179]
  16. J Comp Neurol. 1983 Aug 20;218(4):460-70 [PMID: 6619324]
  17. Biomaterials. 2002 Feb;23(3):841-8 [PMID: 11774850]
  18. Brain. 2005 Aug;128(Pt 8):1897-910 [PMID: 15872018]
  19. Tissue Eng Part A. 2008 May;14(5):595-606 [PMID: 18399734]
  20. Biomaterials. 2006 Jan;27(3):505-18 [PMID: 16125771]
  21. J Neurosci. 1995 May;15(5 Pt 2):4109-23 [PMID: 7751969]
  22. Biomaterials. 2005 May;26(15):2603-10 [PMID: 15585263]
  23. J Cell Sci. 1993 May;105 ( Pt 1):203-12 [PMID: 8360274]
  24. Biomaterials. 2008 Jan;29(1):118-28 [PMID: 17919720]
  25. Brain Res. 1996 Nov 18;740(1-2):66-74 [PMID: 8973799]
  26. Plast Reconstr Surg. 1990 Mar;85(3):419-24 [PMID: 2154831]
  27. Biomaterials. 2005 May;26(14):1741-9 [PMID: 15576148]
  28. J Biomed Mater Res A. 2010 Jun 1;93(3):1151-9 [PMID: 19768795]
  29. Adv Funct Mater. 2007;17(8):1288-1296 [PMID: 18618021]

Grants

  1. EB012240/NIBIB NIH HHS
  2. HL083900/NHLBI NIH HHS

MeSH Term

Animals
Axons
Biomechanical Phenomena
Electrophysiological Phenomena
Female
Guided Tissue Regeneration
Materials Testing
Myelin Sheath
Nanofibers
Nerve Regeneration
Peripheral Nerves
Rats
Rats, Inbred Lew
Recovery of Function
Tissue Engineering
Tissue Scaffolds

Word Cloud

Created with Highcharts 10.0.0nerveconduitsregenerationnanofibrousperipheraltissueautograftsalignednanofibersbi-layerneuralengineeringtherapeuticcomparablepromotefabricationresultseffectslayerengineerednanostructureTraumainjuriesoftencausedamagedisabilitygoaldevelopsyntheticefficacyNanofibrousshowncurrentmethodsrelyrollingfibroussheetshapeconduitgraftinconsistentsizediscontinuousjointseamadditionlong-termcomparisonstillunknowndevelopednovelone-stepelectrospinningprocessfirsttimefabricatedseamlessconduit:luminallongitudinallyouterrandomlyorganizedmechanicalsupportLong-termvivostudiesdemonstratedsuperiorrandomsummaryshowedsignificantimpactsitustudywillalsoleadscalabledesignedtechnologyplatformcancombineddrugdeliverycelltherapiesEngineering

Similar Articles

Cited By