Modification of saccadic gain by reinforcement.

Laurent Madelain, Céline Paeye, Josh Wallman
Author Information
  1. Laurent Madelain: Laboratoire Ureca, Unité de Formation et de Recherche de Psychologie, Université Ch De Gaulle Lille III, Villeneuve d'Ascq, France. laurent.madelain@univ-lille3.fr

Abstract

Control of saccadic gain is often viewed as a simple compensatory process in which gain is adjusted over many trials by the postsaccadic retinal error, thereby maintaining saccadic accuracy. Here, we propose that gain might also be changed by a reinforcement process not requiring a visual error. To test this hypothesis, we used experimental paradigms in which retinal error was removed by extinguishing the target at the start of each saccade and either an auditory tone or the vision of the target on the fovea was provided as reinforcement after those saccades that met an amplitude criterion. These reinforcement procedures caused a progressive change in saccade amplitude in nearly all subjects, although the rate of adaptation differed greatly among subjects. When we reversed the contingencies and reinforced those saccades landing closer to the original target location, saccade gain changed back toward normal gain in most subjects. When subjects had saccades adapted first by reinforcement and a week later by conventional intrasaccadic step adaptation, both paradigms yielded similar degrees of gain changes and similar transfer to new amplitudes and to new starting positions of the target step as well as comparable rates of recovery. We interpret these changes in saccadic gain in the absence of postsaccadic retinal error as showing that saccade adaptation is not controlled by a single error signal. More generally, our findings suggest that normal saccade adaptation might involve general learning mechanisms rather than only specialized mechanisms for motor calibration.

References

  1. Behav Processes. 1999 Jun;46(2):131-9 [PMID: 24895845]
  2. Exp Brain Res. 2010 Apr;202(1):129-45 [PMID: 20012530]
  3. J Vis. 2008 Jun 02;8(8):3.1-16 [PMID: 18831626]
  4. J Neurosci. 2008 Mar 12;28(11):2804-13 [PMID: 18337410]
  5. Brain Res Cogn Brain Res. 2002 Feb;13(1):41-52 [PMID: 11867249]
  6. Vision Res. 2005 Sep;45(20):2685-703 [PMID: 16005932]
  7. J Exp Anal Behav. 1993 Jul;60(1):17-40 [PMID: 8354965]
  8. Behav Processes. 2011 May;87(1):142-8 [PMID: 21354277]
  9. J Exp Psychol Hum Percept Perform. 1989 May;15(2):249-58 [PMID: 2525598]
  10. Nature. 2002 Jul 25;418(6896):413-7 [PMID: 12140557]
  11. Vision Res. 1997 May;37(10):1367-82 [PMID: 9205728]
  12. Exp Brain Res. 2002 Jan;142(2):284-91 [PMID: 11807582]
  13. J Neurophysiol. 1997 Feb;77(2):874-95 [PMID: 9065856]
  14. Neuron. 2003 Aug 14;39(4):693-700 [PMID: 12925282]
  15. J Neurophysiol. 2008 May;99(5):2577-83 [PMID: 18353917]
  16. J Exp Anal Behav. 1993 Jul;60(1):171-84 [PMID: 8354966]
  17. Brain Res Cogn Brain Res. 2001 Oct;12(2):301-5 [PMID: 11587898]
  18. Vision Res. 1995 Mar;35(5):691-701 [PMID: 7900307]
  19. J Neurophysiol. 2006 Feb;95(2):567-84 [PMID: 16424448]
  20. Invest Ophthalmol. 1976 Aug;15(8):657-60 [PMID: 955831]
  21. J Neurophysiol. 2003 Aug;90(2):972-82 [PMID: 12904499]
  22. J Neurophysiol. 2008 Apr;99(4):1743-57 [PMID: 18234988]
  23. Science. 1995 Sep 29;269(5232):1880-2 [PMID: 7569931]
  24. J Neurophysiol. 2009 Apr;101(4):1713-21 [PMID: 19164105]
  25. Exp Brain Res. 2009 Jul;196(4):475-81 [PMID: 19526358]
  26. Invest Ophthalmol Vis Sci. 2004 Jan;45(1):123-30 [PMID: 14691163]
  27. Science. 1981 Jul 31;213(4507):501-4 [PMID: 7244649]
  28. Vision Res. 2000;40(20):2779-96 [PMID: 10960651]
  29. J Neurosci. 2003 Nov 5;23(31):10052-7 [PMID: 14602819]
  30. J Neurosci. 2006 May 17;26(20):5360-9 [PMID: 16707788]
  31. J Vis. 2010 Oct 22;10(12):29 [PMID: 21047761]
  32. Spat Vis. 1997;10(4):437-42 [PMID: 9176953]
  33. J Exp Anal Behav. 2011 Mar;95(2):149-62 [PMID: 21541123]
  34. J Neurophysiol. 2011 Mar;105(3):1130-40 [PMID: 21123665]
  35. J Neurophysiol. 1998 Feb;79(2):704-15 [PMID: 9463434]
  36. J Neurosci. 2004 Aug 25;24(34):7531-9 [PMID: 15329400]
  37. J Neurophysiol. 2010 Jun;103(6):3302-10 [PMID: 20393067]
  38. Ann Neurol. 1978 Oct;4(4):313-8 [PMID: 727736]
  39. Invest Ophthalmol Vis Sci. 1996 Dec;37(13):2750-8 [PMID: 8977491]
  40. J Neurophysiol. 2000 Jul;84(1):88-95 [PMID: 10899186]
  41. J Neurophysiol. 1999 Jun;81(6):2798-813 [PMID: 10368398]
  42. J Neurophysiol. 1998 Nov;80(5):2405-16 [PMID: 9819252]
  43. Learn Mem. 2005 Jul-Aug;12(4):433-43 [PMID: 16077021]
  44. Neurosci Biobehav Rev. 2010 Jul;34(8):1103-20 [PMID: 20026351]
  45. Spat Vis. 1997;10(4):433-6 [PMID: 9176952]
  46. Exp Brain Res. 2002 Oct;146(4):441-50 [PMID: 12355272]
  47. Rev Oculomot Res. 1989;3:13-67 [PMID: 2486323]
  48. J Neurophysiol. 2007 Oct;98(4):2255-65 [PMID: 17699687]
  49. Science. 2004 Jun 18;304(5678):1782-7 [PMID: 15205529]
  50. Vision Res. 1978;18(1):63-7 [PMID: 664277]
  51. Exp Brain Res. 2003 Oct;152(3):361-7 [PMID: 12904939]
  52. Neuron. 2005 Jul 7;47(1):129-41 [PMID: 15996553]
  53. Nat Neurosci. 2007 Jun;10(6):779-86 [PMID: 17496891]
  54. Vision Res. 2005 Dec;45(27):3391-401 [PMID: 16137738]
  55. J Neurophysiol. 2003 Aug;90(2):1235-44 [PMID: 12711711]
  56. J Appl Behav Anal. 1994 Winter;27(4):739-60 [PMID: 16795849]
  57. Prog Neurobiol. 2004 Jan;72(1):27-53 [PMID: 15019175]

Grants

  1. 1-R01-EY-019508/NEI NIH HHS
  2. RR-03060/NCRR NIH HHS

MeSH Term

Adaptation, Physiological
Female
Humans
Male
Reinforcement, Psychology
Saccades

Word Cloud

Created with Highcharts 10.0.0gainerrorreinforcementsaccadesaccadictargetsubjectsadaptationretinalsaccadesprocesspostsaccadicmightchangedparadigmsamplitudenormalstepsimilarchangesnewmechanismsControloftenviewedsimplecompensatoryadjustedmanytrialstherebymaintainingaccuracyproposealsorequiringvisualtesthypothesisusedexperimentalremovedextinguishingstarteitherauditorytonevisionfoveaprovidedmetcriterionprocedurescausedprogressivechangenearlyalthoughratedifferedgreatlyamongreversedcontingenciesreinforcedlandingcloseroriginallocationbacktowardadaptedfirstweeklaterconventionalintrasaccadicyieldeddegreestransferamplitudesstartingpositionswellcomparableratesrecoveryinterpretabsenceshowingcontrolledsinglesignalgenerallyfindingssuggestinvolvegenerallearningratherspecializedmotorcalibrationModification

Similar Articles

Cited By