Improving the power of chronic disease surveillance by incorporating residential history.

Justin Manjourides, Marcello Pagano
Author Information
  1. Justin Manjourides: Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, U.S.A. justin.manjourides@gmail.com

Abstract

We present a global test for disease clustering with power to identify disturbances from the null population distribution which accounts for the lag time between the date of exposure and the date of diagnosis. Location at diagnosis is often used as a surrogate for the location of exposure; however, the causative exposure could have occurred at a previous address in a case's residential history. We incorporate models for the incubation distribution of a disease to weight each address into the residential history by the corresponding probability of the exposure occurring at that address. We then introduce a test statistic which uses these incubation-weighted addresses to test for a difference between the spatial distribution of the cases and the spatial distribution of the controls, or the background population. We follow the construction of the M statistic to evaluate the significance of these new distance distributions. Our results show that gains in detection power when residential history is accounted for are of such a degree that it might make the qualitative difference between the presence of spatial clustering being detected or not, thus making a strong argument for the inclusion of residential history in the analysis of such data.

References

  1. Science. 1994 Nov 18;266(5188):1202-8 [PMID: 7973702]
  2. J Toxicol Clin Toxicol. 1990;28(3):267-86 [PMID: 2231828]
  3. Environ Health. 2005 Mar 22;4(1):4 [PMID: 15784151]
  4. Am J Epidemiol. 1995 Mar 1;141(5):386-94; discussion 385 [PMID: 7879783]
  5. Stat Med. 2005 Mar 15;24(5):753-73 [PMID: 15523703]
  6. Int J Health Geogr. 2004 Dec 01;3(1):28 [PMID: 15574197]
  7. Int J Health Geogr. 2005 Apr 12;4(1):9 [PMID: 15826315]
  8. Am J Epidemiol. 1990 Jul;132(1 Suppl):S6-13 [PMID: 2356837]
  9. N Engl J Med. 1971 Apr 15;284(15):878-81 [PMID: 5549830]
  10. Br J Cancer. 1992 Apr;65(4):589-92 [PMID: 1562468]
  11. Biometrics. 1991 Sep;47(3):1155-63 [PMID: 1742435]
  12. Int J Epidemiol. 2008 Jun;37(3):669-77 [PMID: 18390878]
  13. Health Phys. 1963 Dec;9:1385-90 [PMID: 14086686]
  14. Stat Med. 2011 Aug 15;30(18):2222-33 [PMID: 21563208]
  15. Int J Health Geogr. 2005 Jan 13;4(1):3 [PMID: 15649320]
  16. Comput Stat Data Anal. 2009 Aug 1;53(10):3640-3649 [PMID: 20161224]
  17. J Chronic Dis. 1959 Apr;9(4):385-93 [PMID: 13641368]
  18. Environ Health Perspect. 2010 Jun;118(6):749-55 [PMID: 20164002]
  19. Am J Epidemiol. 1974 Feb;99(2):92-100 [PMID: 4359273]
  20. Am J Hyg. 1950 May;51(3):310-8 [PMID: 15413610]
  21. MMWR Recomm Rep. 1990 Jul 27;39(RR-11):1-23 [PMID: 2117247]
  22. Int Arch Occup Environ Health. 2001 Aug;74(6):383-95 [PMID: 11563601]
  23. Cancer Causes Control. 2006 May;17(4):449-57 [PMID: 16596297]
  24. Stat Med. 1995 Nov 15-30;14(21-22):2323-34 [PMID: 8711272]
  25. Epidemiol Rev. 1983;5:1-15 [PMID: 6357817]
  26. Am J Epidemiol. 2003 May 15;157(10):898-905 [PMID: 12746242]
  27. Am J Epidemiol. 1990 Jul;132(1 Suppl):S43-7 [PMID: 2162625]
  28. Br J Ind Med. 1954 Apr;11(2):75-104 [PMID: 13149741]
  29. Br Med J. 1965 Dec 4;2(5474):1327-32 [PMID: 5848660]
  30. Forensic Sci Int. 1995 Jun 30;74(1-2):99-113 [PMID: 7665137]

Grants

  1. R35 CA197449/NCI NIH HHS
  2. T32 AI007358/NIAID NIH HHS
  3. R01 EB006195/NIBIB NIH HHS
  4. T32 AI007535/NIAID NIH HHS
  5. R01EB006195/NIBIB NIH HHS
  6. T32 AI007535-10/NIAID NIH HHS
  7. T32AI007358/NIAID NIH HHS
  8. P01CA134294/NCI NIH HHS
  9. P01 CA134294-04/NCI NIH HHS
  10. T32 AI007358-23/NIAID NIH HHS
  11. P01 CA134294/NCI NIH HHS
  12. T32AI007535/NIAID NIH HHS
  13. R01 EB006195-18/NIBIB NIH HHS

MeSH Term

Chronic Disease
Cluster Analysis
Computer Simulation
Data Interpretation, Statistical
Environmental Exposure
Humans

Word Cloud

Created with Highcharts 10.0.0residentialhistorydistributionexposuretestdiseasepoweraddressspatialclusteringpopulationdatediagnosisstatisticdifferencepresentglobalidentifydisturbancesnullaccountslagtimeLocationoftenusedsurrogatelocationhowevercausativeoccurredpreviouscase'sincorporatemodelsincubationweightcorrespondingprobabilityoccurringintroduceusesincubation-weightedaddressescasescontrolsbackgroundfollowconstructionMevaluatesignificancenewdistancedistributionsresultsshowgainsdetectionaccounteddegreemightmakequalitativepresencedetectedthusmakingstrongargumentinclusionanalysisdataImprovingchronicsurveillanceincorporating

Similar Articles

Cited By