A variable region within the genome of Streptococcus pneumoniae contributes to strain-strain variation in virulence.

Richard M Harvey, Uwe H Stroeher, Abiodun D Ogunniyi, Heidi C Smith-Vaughan, Amanda J Leach, James C Paton
Author Information
  1. Richard M Harvey: Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia.

Abstract

The bacterial factors responsible for the variation in invasive potential between different clones and serotypes of Streptococcus pneumoniae are largely unknown. Therefore, the isolation of rare serotype 1 carriage strains in Indigenous Australian communities provided a unique opportunity to compare the genomes of non-invasive and invasive isolates of the same serotype in order to identify such factors. The human virulence status of non-invasive, intermediately virulent and highly virulent serotype 1 isolates was reflected in mice and showed that whilst both human non-invasive and highly virulent isolates were able to colonize the murine nasopharynx equally, only the human highly virulent isolates were able to invade and survive in the murine lungs and blood. Genomic sequencing comparisons between these isolates identified 8 regions >1 kb in size that were specific to only the highly virulent isolates, and included a version of the pneumococcal pathogenicity island 1 variable region (PPI-1v), phage-associated adherence factors, transporters and metabolic enzymes. In particular, a phage-associated endolysin, a putative iron/lead permease and an operon within PPI-1v exhibited niche-specific changes in expression that suggest important roles for these genes in the lungs and blood. Moreover, in vivo competition between pneumococci carrying PPI-1v derivatives representing the two identified versions of the region showed that the version of PPI-1v in the highly virulent isolates was more competitive than the version from the less virulent isolates in the nasopharyngeal tissue, blood and lungs. This study is the first to perform genomic comparisons between serotype 1 isolates with distinct virulence profiles that correlate between mice and humans, and has highlighted the important role that hypervariable genomic loci, such as PPI-1v, play in pneumococcal disease. The findings of this study have important implications for understanding the processes that drive progression from colonization to invasive disease and will help direct the development of novel therapeutic strategies.

References

  1. FEMS Microbiol Lett. 2008 Aug;285(2):170-6 [PMID: 18557785]
  2. J Mol Biol. 1999 Apr 2;287(3):467-84 [PMID: 10092453]
  3. BMC Microbiol. 2008 Feb 28;8:41 [PMID: 18307767]
  4. Dev Biol Stand. 1995;85:293-300 [PMID: 8586192]
  5. Microbiology (Reading). 2006 Feb;152(Pt 2):313-321 [PMID: 16436419]
  6. Mol Microbiol. 1997 Aug;25(4):727-39 [PMID: 9379902]
  7. Virus Genes. 2010 Dec;41(3):450-8 [PMID: 20803062]
  8. Infect Immun. 2010 Feb;78(2):716-25 [PMID: 19948838]
  9. PLoS Pathog. 2009 Jun;5(6):e1000476 [PMID: 19521509]
  10. Int J Antimicrob Agents. 2009 Apr;33(4):364-7 [PMID: 19097761]
  11. Mol Microbiol. 2003 Aug;49(3):795-805 [PMID: 12864860]
  12. Microbiology (Reading). 2006 Feb;152(Pt 2):305-311 [PMID: 16436418]
  13. Infect Immun. 2009 Aug;77(8):3485-90 [PMID: 19506011]
  14. J Bacteriol. 1991 Mar;173(5):1617-22 [PMID: 1847905]
  15. Appl Environ Microbiol. 2009 Mar;75(6):1642-9 [PMID: 19168661]
  16. Infect Immun. 1979 Oct;26(1):143-9 [PMID: 40878]
  17. J Infect Dis. 2009 Apr 1;199(7):1032-42 [PMID: 19203261]
  18. Mol Microbiol. 2004 Aug;53(3):889-901 [PMID: 15255900]
  19. BMC Microbiol. 2003 Jul 03;3:14 [PMID: 12841855]
  20. Infect Immun. 2004 Mar;72(3):1587-93 [PMID: 14977965]
  21. Infect Immun. 1996 Oct;64(10):3957-66 [PMID: 8926055]
  22. J Infect Dis. 2004 Mar 1;189(5):785-96 [PMID: 14976594]
  23. Infect Immun. 2010 Dec;78(12):5262-70 [PMID: 20855513]
  24. Clin Vaccine Immunol. 2009 Feb;16(2):218-21 [PMID: 19091995]
  25. Infect Immun. 1996 Oct;64(10):3967-74 [PMID: 8926056]
  26. Science. 2001 Jul 20;293(5529):498-506 [PMID: 11463916]
  27. Infect Immun. 2002 Oct;70(10):5454-61 [PMID: 12228270]
  28. J Infect Dis. 2004 May 15;189(10):1905-13 [PMID: 15122528]
  29. J Bacteriol. 2007 Nov;189(22):8186-95 [PMID: 17675389]
  30. J Bacteriol. 2009 Mar;191(5):1480-9 [PMID: 19114491]
  31. Methods Enzymol. 1993;217:270-9 [PMID: 8474334]
  32. Infect Immun. 2008 Feb;76(2):646-57 [PMID: 18039836]
  33. Clin Infect Dis. 2006 Feb 15;42(4):451-9 [PMID: 16421787]
  34. Clin Infect Dis. 2006 Sep 15;43(6):693-700 [PMID: 16912941]
  35. Lancet. 2009 Sep 12;374(9693):893-902 [PMID: 19748398]
  36. J Infect Dis. 2004 Oct 1;190(7):1203-11 [PMID: 15346329]
  37. Mol Microbiol. 2002 Sep;45(5):1389-406 [PMID: 12207705]
  38. J Infect Dis. 2009 Oct 1;200(7):1180-1; author reply 1181-2 [PMID: 19723013]
  39. Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4215-20 [PMID: 12642661]
  40. PLoS Pathog. 2010 Aug 12;6(8):e1001044 [PMID: 20714350]
  41. Infect Immun. 2002 Mar;70(3):1635-9 [PMID: 11854257]
  42. Mol Microbiol. 2009 Aug;73(4):663-79 [PMID: 19627498]
  43. Int J Med Microbiol. 2004 Sep;294(2-3):157-68 [PMID: 15493826]
  44. FEMS Microbiol Rev. 2003 Jun;27(2-3):131-43 [PMID: 12829264]
  45. Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2857-62 [PMID: 16481624]
  46. J Biol Chem. 2007 Jul 6;282(27):19606-18 [PMID: 17488720]
  47. J Bacteriol. 1999 May;181(9):2782-8 [PMID: 10217768]
  48. Infect Immun. 2006 Jun;74(6):3513-8 [PMID: 16714583]
  49. Mol Microbiol. 2007 May;64(3):844-57 [PMID: 17462028]
  50. Gene. 1983 Nov;25(1):145-50 [PMID: 6319229]
  51. Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12907-12 [PMID: 17644611]
  52. Infect Immun. 1994 Jun;62(6):2582-9 [PMID: 8188381]
  53. Genetics. 1998 Apr;148(4):1599-610 [PMID: 9560379]
  54. J Infect Dis. 2005 Jul 15;192(2):192-9 [PMID: 15962213]
  55. Infect Immun. 2001 Mar;69(3):1373-80 [PMID: 11179301]
  56. J Infect Dis. 2003 May 1;187(9):1424-32 [PMID: 12717624]
  57. BMC Microbiol. 2007 Aug 27;7:80 [PMID: 17723151]
  58. Mol Microbiol. 2001 May;40(3):572-85 [PMID: 11359564]
  59. Infect Immun. 2010 Dec;78(12):5252-61 [PMID: 20855517]
  60. Bioinformatics. 2005 Aug 15;21(16):3422-3 [PMID: 15976072]
  61. Infect Immun. 2000 Jan;68(1):133-40 [PMID: 10603379]
  62. J Infect Dis. 2005 Sep 1;192(5):791-800 [PMID: 16088828]
  63. BMC Microbiol. 2008 Nov 17;8:198 [PMID: 19014613]
  64. J Clin Microbiol. 2003 Nov;41(11):4966-70 [PMID: 14605125]
  65. Infect Immun. 2002 Aug;70(8):4389-98 [PMID: 12117949]
  66. J Exp Med. 1944 Feb 1;79(2):137-58 [PMID: 19871359]
  67. Infect Immun. 1989 Aug;57(8):2324-30 [PMID: 2568343]
  68. Clin Microbiol Infect. 2008 Jan;14(1):82-4 [PMID: 17986268]
  69. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  70. PLoS One. 2008;3(12):e4102 [PMID: 19116661]
  71. Infect Immun. 1996 Dec;64(12):5255-62 [PMID: 8945574]
  72. J Infect Dis. 1995 Jul;172(1):119-23 [PMID: 7797901]
  73. J Bacteriol. 2008 Aug;190(15):5480-92 [PMID: 18515415]
  74. Infect Immun. 2009 Sep;77(9):3826-37 [PMID: 19528220]
  75. J Infect Dis. 2007 Dec 15;196(12):1820-6 [PMID: 18190263]
  76. J Clin Microbiol. 2007 Jun;45(6):1684-9 [PMID: 17392439]
  77. Infect Immun. 2006 Aug;74(8):4766-77 [PMID: 16861665]
  78. APMIS. 1996 May;104(5):321-38 [PMID: 8703438]
  79. Mol Microbiol. 2001 May;40(3):555-71 [PMID: 11359563]
  80. J Bacteriol. 2009 Aug;191(15):4854-62 [PMID: 19502408]
  81. PLoS Pathog. 2010 Aug 12;6(8):e1001047 [PMID: 20714354]
  82. Microbiology (Reading). 2002 Jul;148(Pt 7):2045-2053 [PMID: 12101293]

Grants

  1. /Wellcome Trust

MeSH Term

Animals
Colony Count, Microbial
Disease Models, Animal
Gene Expression Regulation, Bacterial
Genes, Bacterial
Genetic Variation
Genome, Bacterial
Genomic Islands
Humans
Lung
Mice
Mice, Inbred BALB C
Mutation
Nasopharynx
Phenotype
Pneumococcal Infections
Reproducibility of Results
Sequence Analysis, DNA
Serotyping
Species Specificity
Streptococcus pneumoniae
Virulence

Word Cloud

Created with Highcharts 10.0.0isolatesvirulenthighlyPPI-1vserotype1factorsinvasivenon-invasivehumanvirulencelungsbloodversionregionimportantvariationStreptococcuspneumoniaemiceshowedablemurinecomparisonsidentifiedpneumococcalvariablephage-associatedwithinstudygenomicdiseasebacterialresponsiblepotentialdifferentclonesserotypeslargelyunknownThereforeisolationrarecarriagestrainsIndigenousAustraliancommunitiesprovideduniqueopportunitycomparegenomesorderidentifystatusintermediatelyreflectedwhilstcolonizenasopharynxequallyinvadesurviveGenomicsequencing8regions>1kbsizespecificincludedpathogenicityislandadherencetransportersmetabolicenzymesparticularendolysinputativeiron/leadpermeaseoperonexhibitedniche-specificchangesexpressionsuggestrolesgenesMoreovervivocompetitionpneumococcicarryingderivativesrepresentingtwoversionscompetitivelessnasopharyngealtissuefirstperformdistinctprofilescorrelatehumanshighlightedrolehypervariablelociplayfindingsimplicationsunderstandingprocessesdriveprogressioncolonizationwillhelpdirectdevelopmentnoveltherapeuticstrategiesgenomecontributesstrain-strain

Similar Articles

Cited By