Helicobacter pylori perturbs iron trafficking in the epithelium to grow on the cell surface.
Shumin Tan, Jennifer M Noto, Judith Romero-Gallo, Richard M Peek, Manuel R Amieva
Author Information
Shumin Tan: Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America.
中文译文
English
Helicobacter pylori (Hp) injects the CagA effector protein into host epithelial cells and induces growth factor-like signaling, perturbs cell-cell junctions, and alters host cell polarity. This enables Hp to grow as microcolonies adhered to the host cell surface even in conditions that do not support growth of free-swimming bacteria. We hypothesized that CagA alters host cell physiology to allow Hp to obtain specific nutrients from or across the epithelial barrier. Using a polarized epithelium model system, we find that isogenic ΔcagA mutants are defective in cell surface microcolony formation, but exogenous addition of iron to the apical medium partially rescues this defect, suggesting that one of CagA's effects on host cells is to facilitate iron acquisition from the host. Hp adhered to the apical epithelial surface increase basolateral uptake of transferrin and induce its transcytosis in a CagA-dependent manner. Both CagA and VacA contribute to the perturbation of transferrin recycling, since VacA is involved in apical mislocalization of the transferrin receptor to sites of bacterial attachment. To determine if the transferrin recycling pathway is involved in Hp colonization of the cell surface, we silenced transferrin receptor expression during infection. This resulted in a reduced ability of Hp to colonize the polarized epithelium. To test whether CagA is important in promoting iron acquisition in vivo, we compared colonization of Hp in iron-replete vs. iron-deficient Mongolian gerbils. While wild type Hp and ΔcagA mutants colonized iron-replete gerbils at similar levels, ΔcagA mutants are markedly impaired in colonizing iron-deficient gerbils. Our study indicates that CagA and VacA act in concert to usurp the polarized process of host cell iron uptake, allowing Hp to use the cell surface as a replicative niche.
Arch Histol Cytol. 2007 Apr;70(1):1-19
[PMID: 17558140 ]
J Nutr. 1991 Sep;121(9):1418-24
[PMID: 1880620 ]
Mol Cell. 2002 Oct;10(4):745-55
[PMID: 12419219 ]
Infect Immun. 2006 Jan;74(1):602-14
[PMID: 16369017 ]
Scand J Gastroenterol. 2010 Jun;45(6):665-76
[PMID: 20201716 ]
J Clin Invest. 2001 Mar;107(5):611-20
[PMID: 11238562 ]
Dis Model Mech. 2010 Sep-Oct;3(9-10):605-17
[PMID: 20682750 ]
Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10646-51
[PMID: 16027366 ]
J Cell Biol. 1992 Feb;116(4):889-99
[PMID: 1734022 ]
Int Rev Cell Mol Biol. 2008;270:145-79
[PMID: 19081536 ]
Cell Microbiol. 2004 Feb;6(2):167-74
[PMID: 14706102 ]
Infect Immun. 2003 Nov;71(11):6510-25
[PMID: 14573673 ]
Cancer Sci. 2008 Oct;99(10):2004-11
[PMID: 19016760 ]
J Bacteriol. 2001 Feb;183(4):1259-68
[PMID: 11157938 ]
Arch Med Res. 2010 Jan;41(1):38-45
[PMID: 20430253 ]
Infect Immun. 2003 Dec;71(12):7069-78
[PMID: 14638797 ]
J Biol Chem. 2009 Jan 16;284(3):1612-9
[PMID: 18996844 ]
Mol Biol Cell. 2005 May;16(5):2577-85
[PMID: 15772151 ]
J Biol Chem. 1995 Jul 28;270(30):17771-7
[PMID: 7629077 ]
J Cell Biol. 1996 Oct;135(1):139-52
[PMID: 8858169 ]
Trends Microbiol. 1993 May;1(2):66-9
[PMID: 8044465 ]
J Pediatr. 1977 Dec;91(6):870-4
[PMID: 925812 ]
Blood. 1985 Oct;66(4):935-9
[PMID: 2994783 ]
J Inorg Biochem. 2010 Mar;104(3):282-8
[PMID: 19850350 ]
Biochem J. 1984 Apr 15;219(2):505-10
[PMID: 6743230 ]
PLoS Pathog. 2008 May 16;4(5):e1000064
[PMID: 18483552 ]
Nat Rev Mol Cell Biol. 2008 Nov;9(11):833-45
[PMID: 18946473 ]
Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9542-7
[PMID: 12883001 ]
J Clin Invest. 1998 Aug 15;102(4):813-20
[PMID: 9710450 ]
Gut. 1990 Feb;31(2):134-8
[PMID: 2311970 ]
Science. 2003 May 30;300(5624):1430-4
[PMID: 12775840 ]
J Biol Chem. 1983 Apr 25;258(8):4715-24
[PMID: 6300098 ]
Science. 2004 Oct 22;306(5696):686-7
[PMID: 15499017 ]
J Biol Chem. 1997 Oct 3;272(40):25022-8
[PMID: 9312109 ]
Cell Microbiol. 2008 Mar;10(3):781-94
[PMID: 18005242 ]
Nature. 2007 May 17;447(7142):330-3
[PMID: 17507984 ]
Annu Rev Microbiol. 2000;54:615-40
[PMID: 11018139 ]
PLoS Pathog. 2009 Oct;5(10):e1000603
[PMID: 19798427 ]
J Infect Dis. 2009 Mar 1;199(5):641-51
[PMID: 19199544 ]
Science. 1998 Jan 16;279(5349):373-7
[PMID: 9430586 ]
Annu Rev Nutr. 2003;23:283-301
[PMID: 12626689 ]
Cell Microbiol. 2009 Mar;11(3):488-505
[PMID: 19046339 ]
Aliment Pharmacol Ther. 2002 Mar;16 Suppl 1:3-15
[PMID: 11849122 ]
PLoS Pathog. 2010 May 13;6(5):e1000900
[PMID: 20485518 ]
Mol Biol Cell. 2010 Jan 1;21(1):95-105
[PMID: 19864464 ]
Gastroenterology. 2007 Apr;132(4):1309-19
[PMID: 17408661 ]
J Biol Chem. 2002 Mar 1;277(9):6775-8
[PMID: 11788577 ]
Ann Intern Med. 1999 Nov 2;131(9):668-72
[PMID: 10577329 ]
Nat Rev Microbiol. 2005 Apr;3(4):320-32
[PMID: 15759043 ]
J Cell Biol. 1986 Feb;102(2):457-68
[PMID: 3511070 ]
J Bacteriol. 2004 Feb;186(3):885-8
[PMID: 14729719 ]
Curr Opin Microbiol. 2005 Feb;8(1):67-73
[PMID: 15694859 ]
J Membr Biol. 1989 Mar;107(3):277-86
[PMID: 2716048 ]
Infect Immun. 2010 May;78(5):1841-9
[PMID: 20176792 ]
Nat Med. 2006 Sep;12(9):1030-8
[PMID: 16951684 ]
J Cell Biol. 2007 Jan 1;176(1):27-33
[PMID: 17200415 ]
Cell Host Microbe. 2007 Oct 11;2(4):250-63
[PMID: 18005743 ]
Biochim Biophys Acta. 1973 Apr 28;304(2):580-5
[PMID: 4197026 ]
Gut. 2007 Jun;56(6):772-81
[PMID: 17170018 ]
J Cell Biol. 2003 Apr 28;161(2):249-55
[PMID: 12719469 ]
Nat Rev Mol Cell Biol. 2005 Mar;6(3):233-47
[PMID: 15738988 ]
J Med Microbiol. 2008 Feb;57(Pt 2):145-150
[PMID: 18201978 ]
Cell Microbiol. 2002 Oct;4(10):677-90
[PMID: 12366404 ]
Science. 2002 Jan 25;295(5555):683-6
[PMID: 11743164 ]
Cancer Res. 2008 Jan 15;68(2):379-87
[PMID: 18199531 ]
FEMS Microbiol Lett. 1999 Jun 15;175(2):165-70
[PMID: 10386365 ]
J Clin Invest. 2001 Sep;108(6):929-37
[PMID: 11560962 ]
Science. 2008 May 23;320(5879):1088-92
[PMID: 18451267 ]
Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16339-44
[PMID: 16258069 ]
Int Rev Cytol. 2003;226:127-64
[PMID: 12921237 ]
Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):5024-9
[PMID: 15044704 ]
Biochemistry. 2002 Jun 11;41(23):7416-23
[PMID: 12044175 ]
Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9661-6
[PMID: 15980153 ]
Oncogene. 2008 Nov 24;27(55):7047-54
[PMID: 19029944 ]
EMBO J. 1986 Apr;5(4):653-8
[PMID: 3011419 ]
Mol Microbiol. 2002 Feb;43(4):971-80
[PMID: 11929545 ]
Cancer Res. 1988 Aug 1;48(15):4168-70
[PMID: 3390810 ]
Am J Gastroenterol. 2005 Feb;100(2):453-9
[PMID: 15667507 ]
Infect Immun. 2002 Feb;70(2):606-11
[PMID: 11796589 ]
Infect Immun. 2004 Apr;72(4):2358-68
[PMID: 15039361 ]
Adv Exp Med Biol. 1981;135:155-81
[PMID: 7010960 ]
Biochim Biophys Acta. 2009 Jul;1790(7):600-5
[PMID: 18675317 ]
PLoS Pathog. 2006 Jan;2(1):e3
[PMID: 16446782 ]
J Clin Microbiol. 2006 May;44(5):1650-8
[PMID: 16672389 ]
Int J Antimicrob Agents. 2009 Apr;33(4):301.e1-8
[PMID: 18842395 ]
Helicobacter. 2010 Jun;15(3):163-76
[PMID: 20557357 ]
PLoS Pathog. 2009 May;5(5):e1000407
[PMID: 19412339 ]
J Cell Biol. 2007 Apr 9;177(1):21-7
[PMID: 17403925 ]
Ciba Found Symp. 1987;125:168-86
[PMID: 3549195 ]
Infect Immun. 1991 Jun;59(6):1899-904
[PMID: 1828057 ]
Science. 2002 Jul 26;297(5581):573-8
[PMID: 12142529 ]
R01 CA077955/NCI NIH HHS
R01 CA092229/NCI NIH HHS
CA77955/NCI NIH HHS
CA92229/NCI NIH HHS
R01 AI038459/NIAID NIH HHS
R01 DK058587/NIDDK NIH HHS
R29 CA077955/NCI NIH HHS
AI038459/NIAID NIH HHS
DK58587/NIDDK NIH HHS
CA116837/NCI NIH HHS
Adaptation, Physiological
Animals
Antigens, Bacterial
Bacterial Adhesion
Bacterial Proteins
Caco-2 Cells
Cell Line
Cell Membrane
Cell Polarity
Dogs
Down-Regulation
Epithelium
Gastric Mucosa
Gerbillinae
Helicobacter Infections
Helicobacter pylori
Humans
Intercellular Junctions
Iron
Receptors, Transferrin
Sequence Deletion
Signal Transduction
Transcytosis
Transferrin
Antigens, Bacterial
Bacterial Proteins
Receptors, Transferrin
Transferrin
VacA protein, Helicobacter pylori
cagA protein, Helicobacter pylori
Iron