Auditory perception of self-similarity in water sounds.

Maria N Geffen, Judit Gervain, Janet F Werker, Marcelo O Magnasco
Author Information
  1. Maria N Geffen: Department of Otorhinolaryngology - Head and Neck Surgery, University of Pennsylvania School of Medicine Philadelphia, PA, USA.

Abstract

Many natural signals, including environmental sounds, exhibit scale-invariant statistics: their structure is repeated at multiple scales. Such scale-invariance has been identified separately across spectral and temporal correlations of natural sounds (Clarke and Voss, 1975; Attias and Schreiner, 1997; Escabi et al., 2003; Singh and Theunissen, 2003). Yet the role of scale-invariance across overall spectro-temporal structure of the sound has not been explored directly in auditory perception. Here, we identify that the acoustic waveform from the recording of running water is a self-similar fractal, exhibiting scale-invariance not only within spectral channels, but also across the full spectral bandwidth. The auditory perception of the water sound did not change with its scale. We tested the role of scale-invariance in perception by using an artificial sound, which could be rendered scale-invariant. We generated a random chirp stimulus: an auditory signal controlled by two parameters, Q, controlling the relative, and r, controlling the absolute, temporal structure of the sound. Imposing scale-invariant statistics on the artificial sound was required for its perception as natural and water-like. Further, Q had to be restricted to a specific range for the sound to be perceived as natural. To detect self-similarity in the water sound, and identify Q, the auditory system needs to process the temporal dynamics of the waveform across spectral bands in terms of the number of cycles, rather than absolute timing. We propose a two-stage neural model implementing this computation. This computation may be carried out by circuits of neurons in the auditory cortex. The set of auditory stimuli developed in this study are particularly suitable for measurements of response properties of neurons in the auditory pathway, allowing for quantification of the effects of varying the statistics of the spectro-temporal statistical structure of the stimulus.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1935-40 [PMID: 11172054]
  2. Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1188-93 [PMID: 21199948]
  3. Nat Neurosci. 1999 Nov;2(11):947-57 [PMID: 10526332]
  4. J Neurophysiol. 2005 Dec;94(6):4051-67 [PMID: 16135553]
  5. Curr Biol. 2006 Feb 7;16(3):264-71 [PMID: 16461279]
  6. Curr Opin Neurobiol. 2009 Aug;19(4):430-3 [PMID: 19674890]
  7. PLoS One. 2008 Feb 27;3(2):e1655 [PMID: 18301738]
  8. Nat Neurosci. 2002 Apr;5(4):356-63 [PMID: 11896400]
  9. Nature. 1996 Jun 13;381(6583):607-9 [PMID: 8637596]
  10. Vision Res. 2001 Mar;41(7):955-64 [PMID: 11248280]
  11. J Acoust Soc Am. 1969 Oct;46(4):924-38 [PMID: 4309951]
  12. Nature. 1999 Jan 14;397(6715):154-7 [PMID: 9923676]
  13. PLoS One. 2011 Jan 11;6(1):e16104 [PMID: 21264310]
  14. PLoS Biol. 2008 Jan;6(1):e16 [PMID: 18232737]
  15. J Neurophysiol. 2001 Mar;85(3):1220-34 [PMID: 11247991]
  16. Nat Neurosci. 2005 Oct;8(10):1371-9 [PMID: 16136039]
  17. Proc Biol Sci. 1995 Dec 22;262(1365):259-65 [PMID: 8587884]
  18. J Neurosci. 2010 Jan 20;30(3):802-19 [PMID: 20089889]
  19. Nature. 2006 Feb 23;439(7079):978-82 [PMID: 16495999]
  20. Network. 2011;22(1-4):4-44 [PMID: 22149669]
  21. J Neurosci. 2002 Apr 1;22(7):2904-15 [PMID: 11923455]
  22. J Acoust Soc Am. 2003 Dec;114(6 Pt 1):3394-411 [PMID: 14714819]
  23. Psychol Rev. 1954 May;61(3):183-93 [PMID: 13167245]
  24. J Neurosci. 2010 Nov 24;30(47):15969-80 [PMID: 21106835]
  25. J Neurosci. 2006 Jul 12;26(28):7477-90 [PMID: 16837596]
  26. Nature. 2007 Sep 6;449(7158):92-5 [PMID: 17805296]
  27. Phys Rev Lett. 1994 Aug 8;73(6):814-817 [PMID: 10057546]
  28. J Neurophysiol. 2002 Dec;88(6):3409-20 [PMID: 12466457]
  29. Neuron. 2008 Jun 26;58(6):956-66 [PMID: 18579084]
  30. Annu Rev Neurosci. 2001;24:1193-216 [PMID: 11520932]
  31. J Neurophysiol. 2008 May;99(5):2496-509 [PMID: 18353910]
  32. J Neurosci. 2008 Dec 3;28(49):13268-73 [PMID: 19052218]
  33. Eur J Neurosci. 2008 Jun;27(12):3310-21 [PMID: 18598269]
  34. PLoS Biol. 2005 Oct;3(10):e342 [PMID: 16171408]
  35. PLoS Biol. 2007 Mar;5(3):e65 [PMID: 17341132]
  36. Int Rev Neurobiol. 2005;70:207-52 [PMID: 16472636]
  37. J Opt Soc Am A. 1987 Dec;4(12):2379-94 [PMID: 3430225]
  38. J Neurosci. 2003 Dec 17;23(37):11489-504 [PMID: 14684853]
  39. Neuron. 2009 Feb 26;61(4):570-86 [PMID: 19249277]
  40. J Neurosci. 2004 Oct 13;24(41):9201-11 [PMID: 15483139]

Word Cloud

Created with Highcharts 10.0.0auditorysoundperceptionscale-invariancenaturalstructureacrossspectraltemporalwatersoundsscale-invariantQ2003rolespectro-temporalidentifywaveformartificialcontrollingabsolutestatisticsself-similaritycomputationneuronsManysignalsincludingenvironmentalexhibitstatistics:repeatedmultiplescalesidentifiedseparatelycorrelationsClarkeVoss1975AttiasSchreiner1997EscabietalSinghTheunissenYetoverallexploreddirectlyacousticrecordingrunningself-similarfractalexhibitingwithinchannelsalsofullbandwidthchangescaletestedusingrenderedgeneratedrandomchirpstimulus:signalcontrolledtwoparametersrelativerImposingrequiredwater-likerestrictedspecificrangeperceiveddetectsystemneedsprocessdynamicsbandstermsnumbercyclesrathertimingproposetwo-stageneuralmodelimplementingmaycarriedcircuitscortexsetstimulidevelopedstudyparticularlysuitablemeasurementsresponsepropertiespathwayallowingquantificationeffectsvaryingstatisticalstimulusAuditorycoherencepsychophysicsreceptivefieldadaptation

Similar Articles

Cited By