Classifying tissue samples from measurements on cells with within-class tissue sample heterogeneity.

Jose-Miguel Yamal, Michele Follen, Martial Guillaud, Dennis D Cox
Author Information
  1. Jose-Miguel Yamal: Division of Biostatistics, The University of Texas School of Public Health, Houston, TX 77030, USA. jose-miguel.yamal@uth.tmc.edu

Abstract

We consider here the problem of classifying a macro-level object based on measurements of embedded (micro-level) observations within each object, for example, classifying a patient based on measurements on a collection of a random number of their cells. Classification problems with this hierarchical, nested structure have not received the same statistical understanding as the general classification problem. Some heuristic approaches have been developed and a few authors have proposed formal statistical models. We focus on the problem where heterogeneity exists between the macro-level objects within a class. We propose a model-based statistical methodology that models the log-odds of the macro-level object belonging to a class using a latent-class variable model to account for this heterogeneity. The latent classes are estimated by clustering the macro-level object density estimates. We apply this method to the detection of patients with cervical neoplasia based on quantitative cytology measurements on cells in a Papanicolaou smear. Quantitative cytology is much cheaper and potentially can take less time than the current standard of care. The results show that the automated quantitative cytology using the proposed method is roughly equivalent to clinical cytopathology and shows significant improvement over a statistical model that does not account for the heterogeneity of the data.

References

  1. J Periodontol. 2007 Jan;78(1):79-86 [PMID: 17199543]
  2. Adv Bioinformatics. 2009;:584603 [PMID: 20049163]
  3. J Urol (Paris). 1989;95(1):3-9 [PMID: 2732483]
  4. Anal Quant Cytol. 1982 Jun;4(2):81-94 [PMID: 7114623]
  5. Biometrics. 2003 Sep;59(3):614-23 [PMID: 14601762]
  6. Anal Cell Pathol. 1999;18(4):191-202 [PMID: 10609563]
  7. Biochem J. 2000 Jun 15;348 Pt 3:497-506 [PMID: 10839979]
  8. Cell Oncol. 2005;27(1):33-41 [PMID: 15750205]
  9. Cytometry A. 2007 May;71(5):334-44 [PMID: 17352421]
  10. Int J Cancer. 2011 Mar 1;128(5):1151-68 [PMID: 20830707]
  11. Gynecol Oncol. 2005 Dec;99(3 Suppl 1):S24-31 [PMID: 16185757]
  12. Anal Cell Pathol. 2003;25(4):187-91 [PMID: 14501085]
  13. Anal Cell Pathol. 2003;25(4):173-85 [PMID: 14501084]
  14. Cancer. 2006 Jul 15;107(2):309-18 [PMID: 16773634]
  15. Gynecol Oncol. 2004 Aug;94(2):296-306 [PMID: 15297165]
  16. Anal Cell Pathol. 1998;16(2):63-82 [PMID: 9692681]
  17. Cytometry. 1985 Sep;6(5):461-70 [PMID: 4042786]
  18. JAMA. 2001 Mar 21;285(11):1500-5 [PMID: 11255427]
  19. J Am Dent Assoc. 2002 Mar;133(3):357-62 [PMID: 11934191]
  20. IEEE Trans Biomed Eng. 1996 Oct;43(10):1011-20 [PMID: 9214818]
  21. J Am Dent Assoc. 1999 Oct;130(10):1445-57 [PMID: 10570588]

Grants

  1. T32 CA096520/NCI NIH HHS
  2. P01-CA-82710-09/NCI NIH HHS

MeSH Term

Artificial Intelligence
Biostatistics
DNA, Neoplasm
Diagnosis, Computer-Assisted
Female
Humans
Mass Screening
Models, Statistical
Papanicolaou Test
Uterine Cervical Neoplasms
Vaginal Smears

Chemicals

DNA, Neoplasm

Word Cloud

Created with Highcharts 10.0.0macro-levelobjectmeasurementsstatisticalheterogeneityproblembasedcellscytologyclassifyingwithinproposedmodelsclassusingmodelaccountmethodquantitativetissueconsiderembeddedmicro-levelobservationsexamplepatientcollectionrandomnumberClassificationproblemshierarchicalnestedstructurereceivedunderstandinggeneralclassificationheuristicapproachesdevelopedauthorsformalfocusexistsobjectsproposemodel-basedmethodologylog-oddsbelonginglatent-classvariablelatentclassesestimatedclusteringdensityestimatesapplydetectionpatientscervicalneoplasiaPapanicolaousmearQuantitativemuchcheaperpotentiallycantakelesstimecurrentstandardcareresultsshowautomatedroughlyequivalentclinicalcytopathologyshowssignificantimprovementdataClassifyingsampleswithin-classsample

Similar Articles

Cited By