A model of non-elemental olfactory learning in Drosophila.

Jan Wessnitzer, Joanna M Young, J Douglas Armstrong, Barbara Webb
Author Information
  1. Jan Wessnitzer: Institute of Perception, Action and Behaviour, School of Informatics, University of Edinburgh, Edinburgh, UK. jwessnit@inf.ed.ac.uk

Abstract

The pathways for olfactory learning in the fruitfly Drosophila have been extensively investigated, with mounting evidence that that the mushroom body is the site of the olfactory associative memory trace (Heisenberg, Nature 4:266-275, 2003; Gerber et al., Curr Opin Neurobiol 14:737-744, 2004). Heisenberg's description of the mushroom body as an associative learning device is a testable hypothesis that relates the mushroom body's function to its neural structure and input and output pathways. Here, we formalise a relatively complete computational model of the network interactions in the neural circuitry of the insect antennal lobe and mushroom body, to investigate their role in olfactory learning, and specifically, how this might support learning of complex (non-elemental; Giurfa, Curr Opin Neuroethol 13:726-735, 2003) discriminations involving compound stimuli. We find that the circuit is able to learn all tested non-elemental paradigms. This does not crucially depend on the number of Kenyon cells but rather on the connection strength of projection neurons to Kenyon cells, such that the Kenyon cells require a certain number of coincident inputs to fire. As a consequence, the encoding in the mushroom body resembles a unique cue or configural representation of compound stimuli (Pearce, Psychol Rev 101:587-607, 1994). Learning of some conditions, particularly negative patterning, is strongly affected by the assumption of normalisation effects occurring at the level of the antennal lobe. Surprisingly, the learning capacity of this circuit, which is a simplification of the actual circuitry in the fly, seems to be greater than the capacity expressed by the fly in shock-odour association experiments (Young et al. 2010).

References

  1. BMC Biol. 2009 Aug 04;7:46 [PMID: 19653886]
  2. Science. 2004 Jan 16;303(5656):366-70 [PMID: 14684826]
  3. Cell. 2009 Oct 16;139(2):405-15 [PMID: 19837039]
  4. Naturwissenschaften. 2008 Aug;95(8):767-74 [PMID: 18443757]
  5. Annu Rev Entomol. 2006;51:113-35 [PMID: 16332206]
  6. Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):19027-32 [PMID: 16357192]
  7. Psychol Rev. 1994 Oct;101(4):587-607 [PMID: 7984708]
  8. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3715-9 [PMID: 8475121]
  9. Biol Cybern. 2008 Aug;99(2):89-103 [PMID: 18607623]
  10. Curr Biol. 2005 Sep 6;15(17):1535-47 [PMID: 16139208]
  11. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006 Oct;192(10):1133-45 [PMID: 16830136]
  12. Nat Rev Neurosci. 2007 May;8(5):341-54 [PMID: 17453015]
  13. Nat Neurosci. 2000 Sep;3(9):919-26 [PMID: 10966623]
  14. Neuron. 2010 Sep 23;67(6):1021-33 [PMID: 20869598]
  15. J Neurophysiol. 2008 Feb;99(2):734-46 [PMID: 18094099]
  16. J Neurosci. 2007 Oct 31;27(44):11966-77 [PMID: 17978037]
  17. Curr Biol. 2009 Nov 17;19(21):R995-R1008 [PMID: 19922859]
  18. Cell. 2003 Jan 24;112(2):271-82 [PMID: 12553914]
  19. Neuron. 2007 Jan 4;53(1):103-15 [PMID: 17196534]
  20. Neuron. 2004 May 13;42(3):437-49 [PMID: 15134640]
  21. J Neurosci. 2007 Oct 10;27(41):11132-8 [PMID: 17928455]
  22. Sci China Life Sci. 2010 Apr;53(4):472-84 [PMID: 20596914]
  23. Neuron. 2002 Aug 29;35(5):951-60 [PMID: 12372288]
  24. Neuron. 2009 Nov 25;64(4):510-21 [PMID: 19945393]
  25. Physiology (Bethesda). 2010 Dec;25(6):338-46 [PMID: 21186278]
  26. Learn Mem. 2001 Mar-Apr;8(2):70-8 [PMID: 11274252]
  27. Trends Neurosci. 2010 Oct;33(10):457-64 [PMID: 20701984]
  28. J Neurogenet. 2009;23(1-2):156-72 [PMID: 19140035]
  29. Neuron. 2008 Sep 25;59(6):1009-23 [PMID: 18817738]
  30. Neuroreport. 2006 Apr 3;17(5):553-7 [PMID: 16543825]
  31. Neural Comput. 2009 Aug;21(8):2123-51 [PMID: 19538091]
  32. Curr Opin Neurobiol. 2004 Dec;14(6):737-44 [PMID: 15582377]
  33. J Comp Neurol. 2008 Jun 10;508(5):711-55 [PMID: 18395827]
  34. Nat Neurosci. 2010 Apr;13(4):439-49 [PMID: 20139975]
  35. Front Syst Neurosci. 2009 Dec 04;3:16 [PMID: 20198105]
  36. J Neurophysiol. 2010 Aug;104(2):1007-19 [PMID: 20505124]
  37. Nature. 2007 Aug 9;448(7154):709-13 [PMID: 17581587]
  38. J Neurophysiol. 2004 Oct;92(4):2589-603 [PMID: 15190098]
  39. Neuron. 2009 Dec 10;64(5):692-706 [PMID: 20005825]
  40. Learn Mem. 2006 Sep-Oct;13(5):618-28 [PMID: 17015858]
  41. J Comp Neurol. 1999 Mar 22;405(4):543-52 [PMID: 10098944]
  42. Nat Neurosci. 2007 Sep;10(9):1176-84 [PMID: 17660812]
  43. PLoS Comput Biol. 2008 Aug 01;4(8):e1000139 [PMID: 18795147]
  44. Philos Trans A Math Phys Eng Sci. 2009 Jun 13;367(1896):2387-97 [PMID: 19414461]
  45. Neural Comput. 1999 Oct 1;11(7):1673-90 [PMID: 10490942]
  46. J Neurophysiol. 2005 Jun;93(6):3410-7 [PMID: 15673548]
  47. Nat Rev Neurosci. 2003 Apr;4(4):266-75 [PMID: 12671643]
  48. Biol Cybern. 2005 Dec;93(6):436-46 [PMID: 16320081]
  49. Learn Mem. 2004 May-Jun;11(3):288-93 [PMID: 15169858]
  50. Neuron. 2010 Apr 29;66(2):287-99 [PMID: 20435004]
  51. Behav Brain Res. 2003 Oct 17;145(1-2):135-43 [PMID: 14529812]
  52. Neural Comput. 2004 Aug;16(8):1601-40 [PMID: 15228747]
  53. Cereb Cortex. 2007 Oct;17(10):2443-52 [PMID: 17220510]
  54. Curr Opin Neurobiol. 2003 Dec;13(6):726-35 [PMID: 14662375]

MeSH Term

Animals
Arthropod Antennae
Computer Simulation
Drosophila
Learning
Models, Neurological
Mushroom Bodies
Odorants
Olfactory Pathways
Sensory Receptor Cells

Word Cloud

Created with Highcharts 10.0.0learningmushroomolfactorybodynon-elementalKenyoncellspathwaysDrosophilaassociative2003CurrOpinneuralmodelcircuitryantennallobecompoundstimulicircuitnumbercapacityflyfruitflyextensivelyinvestigatedmountingevidencesitememorytraceHeisenbergNature4:266-275GerberetalNeurobiol14:737-7442004Heisenberg'sdescriptiondevicetestablehypothesisrelatesbody'sfunctionstructureinputoutputformaliserelativelycompletecomputationalnetworkinteractionsinsectinvestigaterolespecificallymightsupportcomplexGiurfaNeuroethol13:726-735discriminationsinvolvingfindablelearntestedparadigmscruciallydependratherconnectionstrengthprojectionneuronsrequirecertaincoincidentinputsfireconsequenceencodingresemblesuniquecueconfiguralrepresentationPearcePsycholRev101:587-6071994LearningconditionsparticularlynegativepatterningstronglyaffectedassumptionnormalisationeffectsoccurringlevelSurprisinglysimplificationactualseemsgreaterexpressedshock-odourassociationexperimentsYounget al2010

Similar Articles

Cited By (24)