Heteroscedastic nonlinear regression models based on scale mixtures of skew-normal distributions.

Victor H Lachos, Dipankar Bandyopadhyay, Aldo M Garay
Author Information
  1. Victor H Lachos: Departamento de Estatística, Universidade Estatual de Campinas, Brazil.

Abstract

An extension of some standard likelihood based procedures to heteroscedastic nonlinear regression models under scale mixtures of skew-normal (SMSN) distributions is developed. We derive a simple EM-type algorithm for iteratively computing maximum likelihood (ML) estimates and the observed information matrix is derived analytically. Simulation studies demonstrate the robustness of this flexible class against outlying and influential observations, as well as nice asymptotic properties of the proposed EM-type ML estimates. Finally, the methodology is illustrated using an ultrasonic calibration data.

References

  1. Comput Stat Data Anal. 2010 Dec 1;54(12):2883-2898 [PMID: 20730043]
  2. Pharm Stat. 2014 Jan-Feb;13(1):81-93 [PMID: 24106083]

Grants

  1. P20 RR017696/NCRR NIH HHS
  2. P20 RR017696-06/NCRR NIH HHS
  3. R03 DE020114/NIDCR NIH HHS
  4. R03 DE020114-01A1/NIDCR NIH HHS

Word Cloud

Created with Highcharts 10.0.0likelihoodbasednonlinearregressionmodelsscalemixturesskew-normaldistributionsEM-typeMLestimatesextensionstandardproceduresheteroscedasticSMSNdevelopedderivesimplealgorithmiterativelycomputingmaximumobservedinformationmatrixderivedanalyticallySimulationstudiesdemonstraterobustnessflexibleclassoutlyinginfluentialobservationswellniceasymptoticpropertiesproposedFinallymethodologyillustratedusingultrasoniccalibrationdataHeteroscedastic

Similar Articles

Cited By