Concurrent detection of circulating minor histocompatibility antigen-specific CD8+ T cells in SCT recipients by combinatorial encoding MHC multimers.

Kelly Broen, Annelies Greupink-Draaisma, Rob Woestenenk, Nicolaas Schaap, Anthony G Brickner, Harry Dolstra
Author Information
  1. Kelly Broen: Laboratory of Hematology, Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, The Netherlands.

Abstract

Allogeneic stem cell transplantation (SCT) is a potentially curative treatment for patients with hematologic malignancies. Its therapeutic effect is largely dependent on recognition of minor histocompatibility antigens (MiHA) by donor-derived CD8⁺ T cells. Therefore, monitoring of multiple MiHA-specific CD8⁺ T cell responses may prove to be valuable for evaluating the efficacy of allogeneic SCT. In this study, we investigated the use of the combinatorial encoding MHC multimer technique to simultaneously detect MiHA-specific CD8⁺ T cells in peripheral blood of SCT recipients. Feasibility of this approach was demonstrated by applying dual-color encoding MHC multimers for a set of 10 known MiHA. Interestingly, single staining using a fluorochrome- and Qdot-based five-color combination showed comparable results to dual-color staining for most MiHA-specific CD8⁺ T cell responses. In addition, we determined the potential value of combinatorial encoding MHC multimers in MiHA identification. Therefore, a set of 75 candidate MiHA peptides was predicted from polymorphic genes with a hematopoietic expression profile and further selected for high and intermediate binding affinity for HLA-A2. Screening of a large cohort of SCT recipients resulted in the detection of dual-color encoded CD8⁺ T cells following MHC multimer-based T cell enrichment and short ex vivo expansion. Interestingly, candidate MiHA-specific CD8⁺ T cell responses for LAG3 and TLR10 derived polymorphic peptides could be confirmed by genotyping of the respective SNPs. These findings demonstrate the potency of the combinatorial MHC multimer approach in the monitoring of CD8⁺ T cell responses to known and potential MiHA in limited amounts of peripheral blood from allogeneic SCT recipients.

References

  1. J Immunol. 2001 Sep 15;167(6):3223-30 [PMID: 11544309]
  2. Nat Methods. 2009 Jul;6(7):520-6 [PMID: 19543285]
  3. J Exp Med. 2003 Jun 2;197(11):1489-500 [PMID: 12771180]
  4. Science. 2004 Apr 23;304(5670):587-90 [PMID: 15001714]
  5. Blood. 2011 Jan 20;117(3):808-14 [PMID: 20971955]
  6. Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2742-7 [PMID: 12601144]
  7. Blood. 2007 May 1;109(9):4089-96 [PMID: 17234742]
  8. Blood. 2008 Sep 1;112(5):1844-52 [PMID: 18544677]
  9. Blood. 2002 Sep 15;100(6):2132-7 [PMID: 12200377]
  10. Mol Immunol. 2002 Oct;39(3-4):127-37 [PMID: 12200045]
  11. Blood. 2010 Jun 10;115(23):4923-33 [PMID: 20203263]
  12. J Immunol. 2006 Dec 15;177(12):8283-9 [PMID: 17142722]
  13. Science. 1995 Sep 15;269(5230):1588-90 [PMID: 7667640]
  14. Science. 1998 Feb 13;279(5353):1054-7 [PMID: 9461441]
  15. Blood. 2009 Jun 25;113(26):6541-8 [PMID: 19389880]
  16. Nat Protoc. 2006;1(3):1120-32 [PMID: 17406393]
  17. Clin Cancer Res. 2010 Mar 1;16(5):1642-51 [PMID: 20160060]
  18. Cancer Immunol Immunother. 2010 Sep;59(9):1425-33 [PMID: 20177676]
  19. J Exp Med. 2001 Jan 15;193(2):195-206 [PMID: 11148223]
  20. Diabetes. 2010 Jul;59(7):1721-30 [PMID: 20357361]
  21. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3429-33 [PMID: 1565634]
  22. J Immunol. 1996 Sep 1;157(5):1823-6 [PMID: 8757297]
  23. Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3825-30 [PMID: 18308940]
  24. Science. 2006 Sep 8;313(5792):1444-7 [PMID: 16960008]
  25. J Clin Invest. 2005 Dec;115(12):3506-16 [PMID: 16322791]
  26. Chin Med J (Engl). 2010 Apr 5;123(7):912-6 [PMID: 20497687]
  27. J Immunol. 1994 Jan 1;152(1):163-75 [PMID: 8254189]
  28. Immunity. 1997 Mar;6(3):273-81 [PMID: 9075928]
  29. Science. 2003 Sep 5;301(5638):1367-71 [PMID: 12958358]
  30. Cancer Res. 2010 Nov 15;70(22):9073-83 [PMID: 21062987]
  31. Nat Genet. 2002 Jan;30(1):41-7 [PMID: 11731795]
  32. Blood. 2006 May 1;107(9):3779-86 [PMID: 16391015]
  33. Br J Haematol. 2002 Jun;117(4):935-9 [PMID: 12060133]
  34. Science. 1995 Jun 9;268(5216):1476-80 [PMID: 7539551]

Grants

  1. R01 CA118880-05/NCI NIH HHS
  2. R01CA118880/NCI NIH HHS
  3. R01 CA118880-03/NCI NIH HHS
  4. R01 CA118880/NCI NIH HHS
  5. R01 CA118880-02/NCI NIH HHS
  6. R01 CA118880-01A1/NCI NIH HHS
  7. R01 CA118880-04/NCI NIH HHS

MeSH Term

Amino Acid Sequence
CD8-Positive T-Lymphocytes
Cell Proliferation
Enzyme-Linked Immunosorbent Assay
Epitopes
Humans
Lymphocyte Count
Major Histocompatibility Complex
Minor Histocompatibility Antigens
Molecular Sequence Data
Peptides
Protein Multimerization
Staining and Labeling
Stem Cell Transplantation
Tissue Donors

Chemicals

Epitopes
Minor Histocompatibility Antigens
Peptides

Word Cloud

Created with Highcharts 10.0.0TCD8⁺cellSCTMHCMiHAcellsMiHA-specificresponsescombinatorialencodingrecipientsdual-colormultimersminorhistocompatibilityThereforemonitoringallogeneicmultimerperipheralbloodapproachsetknownInterestinglystainingpotentialcandidatepeptidespolymorphicdetectionAllogeneicstemtransplantationpotentiallycurativetreatmentpatientshematologicmalignanciestherapeuticeffectlargelydependentrecognitionantigensdonor-derivedmultiplemayprovevaluableevaluatingefficacystudyinvestigatedusetechniquesimultaneouslydetectFeasibilitydemonstratedapplying10singleusingfluorochrome-Qdot-basedfive-colorcombinationshowedcomparableresultsadditiondeterminedvalueidentification75predictedgeneshematopoieticexpressionprofileselectedhighintermediatebindingaffinityHLA-A2Screeninglargecohortresultedencodedfollowingmultimer-basedenrichmentshortexvivoexpansionLAG3TLR10derivedconfirmedgenotypingrespectiveSNPsfindingsdemonstratepotencylimitedamountsConcurrentcirculatingantigen-specificCD8+

Similar Articles

Cited By