The bacteriostatic and bactericidal effects and the transcriptional response of Mycobacterium tuberculosis to representative oxidative and nitrosative stresses were investigated by growth and survival studies and whole genome expression analysis. The M. tuberculosis reaction to a range of hydrogen peroxide (H(2)O(2)) concentrations fell into three distinct categories: (1) low level exposure resulted in induction of a few highly sensitive H(2)O(2)-responsive genes, (2) intermediate exposure resulted in massive transcriptional changes without an effect on growth or survival, and (3) high exposure resulted in a muted transcriptional response and eventual death. M. tuberculosis appears highly resistant to DNA damage-dependent, mode-one killing caused by low millimolar levels of H(2)O(2) and only succumbs to overwhelming levels of oxidative stress observed in mode-two killing. Nitric oxide (NO) exposure initiated much the same transcriptional response as H(2)O(2). However, unlike H(2)O(2) exposure, NO exposure induced dormancy-related genes and caused dose-dependent bacteriostatic activity without killing. Included in the large shared response to H(2)O(2) and NO was the induction of genes encoding iron-sulfur cluster repair functions including iron acquisition. Stress regulons controlled by IdeR, Sigma H, Sigma E, and FurA comprised a large portion of the response to both stresses. Expression of several oxidative stress defense genes was constitutive, or increased moderately from an already elevated constitutive level, suggesting that bacilli are continually primed for oxidative stress defense.
Mol Microbiol. 2002 Sep;45(5):1303-14
[PMID:
12207698]
Infect Immun. 2005 Aug;73(8):4581-7
[PMID:
16040969]
Microbiology (Reading). 2002 Oct;148(Pt 10):3139-3144
[PMID:
12368447]
Infect Immun. 1999 Jan;67(1):74-9
[PMID:
9864198]
Science. 2002 Feb 8;295(5557):1073-7
[PMID:
11799204]
J Bacteriol. 2006 Apr;188(7):2674-80
[PMID:
16547055]
J Bacteriol. 1999 Jul;181(14):4266-74
[PMID:
10400584]
Annu Rev Microbiol. 2003;57:395-418
[PMID:
14527285]
Methods Mol Med. 2001;54:335-57
[PMID:
21341086]
Infect Immun. 2002 Jul;70(7):3371-81
[PMID:
12065475]
Environ Sci Technol. 2009 Dec 15;43(24):9465-72
[PMID:
19924887]
Infect Immun. 2007 Nov;75(11):5127-34
[PMID:
17709422]
Science. 2003 Dec 12;302(5652):1963-6
[PMID:
14671303]
J Bacteriol. 2003 Mar;185(6):1942-50
[PMID:
12618458]
Mol Microbiol. 2003 Nov;50(3):1031-42
[PMID:
14617159]
Infect Immun. 2001 Mar;69(3):1847-55
[PMID:
11179363]
Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8841-8
[PMID:
10922044]
Mol Med. 1996 Jan;2(1):134-42
[PMID:
8900541]
Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5902-7
[PMID:
11959913]
Infect Immun. 2000 Mar;68(3):1231-4
[PMID:
10678931]
Mol Microbiol. 2001 Nov;42(3):851-65
[PMID:
11722747]
Mol Microbiol. 1992 Apr;6(7):825-31
[PMID:
1602962]
Mol Microbiol. 2001 Mar;39(5):1174-85
[PMID:
11251835]
Cell. 2003 Apr 18;113(2):183-93
[PMID:
12705867]
Nucleic Acids Res. 2009 Jan;37(Database issue):D499-508
[PMID:
18835847]
Microbiology (Reading). 2004 Jun;150(Pt 6):1681-1686
[PMID:
15184554]
Mol Microbiol. 1996 Nov;22(3):535-44
[PMID:
8939436]
Cell Microbiol. 2009 Aug;11(8):1170-8
[PMID:
19438516]
Arch Biochem Biophys. 1992 Nov 1;298(2):446-51
[PMID:
1329657]
Immune Netw. 2009 Apr;9(2):46-52
[PMID:
20107543]
Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4414-8
[PMID:
19237572]
Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9901-6
[PMID:
11481433]
J Bacteriol. 2005 Sep;187(17):6137-46
[PMID:
16109955]
Tuberculosis (Edinb). 2008 Jan;88(1):1-6
[PMID:
17928268]
Mol Microbiol. 1995 Sep;17(5):889-900
[PMID:
8596438]
Infect Immun. 1999 Jan;67(1):460-5
[PMID:
9864257]
Arch Biochem Biophys. 1999 Mar 1;363(1):19-26
[PMID:
10049495]
J Bacteriol. 2001 Oct;183(20):6119-25
[PMID:
11567012]
Science. 2008 Nov 28;322(5906):1392-5
[PMID:
19039139]
Mol Microbiol. 2009 Feb;71(3):583-93
[PMID:
19040639]
Antioxid Redox Signal. 2002 Feb;4(1):141-59
[PMID:
11970850]
J Immunol. 1998 Feb 15;160(4):1796-803
[PMID:
9469439]
Infect Immun. 2006 Jan;74(1):56-63
[PMID:
16368957]
Am J Respir Crit Care Med. 2002 Jul 15;166(2):130-1
[PMID:
12119220]
Cell. 2009 Jul 10;138(1):146-59
[PMID:
19596241]
Nature. 1998 Jun 11;393(6685):537-44
[PMID:
9634230]
J Bacteriol. 1986 May;166(2):519-27
[PMID:
3516975]
Annu Rev Immunol. 2001;19:93-129
[PMID:
11244032]
Infect Immun. 2001 Oct;69(10):6348-63
[PMID:
11553579]
Mol Microbiol. 2001 May;40(4):879-89
[PMID:
11401695]
J Exp Med. 1992 Apr 1;175(4):1111-22
[PMID:
1552282]
Infect Immun. 2001 Aug;69(8):4980-7
[PMID:
11447176]
Curr Opin Chem Biol. 1999 Apr;3(2):152-7
[PMID:
10226040]
J Exp Med. 2003 Sep 1;198(5):693-704
[PMID:
12953091]
Curr Opin Microbiol. 2000 Feb;3(1):35-42
[PMID:
10679417]
Mol Microbiol. 2004 Jun;52(5):1291-302
[PMID:
15165233]
Tuberculosis (Edinb). 2004;84(3-4):256-62
[PMID:
15207495]
Science. 1997 Aug 1;277(5326):653-9
[PMID:
9235882]
Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21
[PMID:
11309499]
Mol Microbiol. 2006 Mar;59(6):1744-53
[PMID:
16553880]
J Bacteriol. 2001 Dec;183(23):6801-6
[PMID:
11698368]
Lancet Infect Dis. 2003 Mar;3(3):148-55
[PMID:
12614731]
Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6625-9
[PMID:
7604044]
J Bacteriol. 1997 May;179(9):2922-9
[PMID:
9139909]
J Bacteriol. 2006 Sep;188(17):6245-52
[PMID:
16923891]
J Exp Med. 2003 Sep 1;198(5):705-13
[PMID:
12953092]
Proc Natl Acad Sci U S A. 2005 Jan 11;102(2):467-72
[PMID:
15626759]
J Gen Microbiol. 1978 Jan;104(1):37-45
[PMID:
24084]
J Clin Microbiol. 2002 Sep;40(9):3162-6
[PMID:
12202547]
Infect Immun. 2001 Oct;69(10):5967-73
[PMID:
11553532]
J Bacteriol. 1998 Sep;180(18):4856-64
[PMID:
9733688]
Biochim Biophys Acta. 2001 Mar 1;1504(1):46-57
[PMID:
11239484]
Annu Rev Biochem. 2008;77:755-76
[PMID:
18173371]
Cell Microbiol. 2003 Sep;5(9):637-48
[PMID:
12925133]