Bayesian Functional Data Analysis Using WinBUGS.

Ciprian M Crainiceanu, A Jeffrey Goldsmith
Author Information
  1. Ciprian M Crainiceanu: Department of Biostatistics, Johns Hopkins University, 615 N. Wolfe St. E3636, Baltimore, MD 21205, United States of America, URL: http://www.biostat.jhsph.edu/~ccrainic/

Abstract

We provide user friendly software for Bayesian analysis of functional data models using WinBUGS 1.4. The excellent properties of Bayesian analysis in this context are due to: (1) dimensionality reduction, which leads to low dimensional projection bases; (2) mixed model representation of functional models, which provides a modular approach to model extension; and (3) orthogonality of the principal component bases, which contributes to excellent chain convergence and mixing properties. Our paper provides one more, essential, reason for using Bayesian analysis for functional models: the existence of software.

References

  1. J Am Stat Assoc. 2009 Jun 1;104(486):541-555 [PMID: 20057925]
  2. J R Stat Soc Series B Stat Methodol. 2006 Apr 1;68(2):179-199 [PMID: 19759841]
  3. J Am Stat Assoc. 2009 Dec 1;104(488):1550-1561 [PMID: 20625442]
  4. Ann Appl Stat. 2009 Mar 1;3(1):458-488 [PMID: 20221415]
  5. Biometrics. 2002 Mar;58(1):121-8 [PMID: 11890306]
  6. Sleep. 1997 Dec;20(12):1077-85 [PMID: 9493915]
  7. Biometrics. 2008 Mar;64(1):64-73 [PMID: 17608780]
  8. Biostatistics. 2010 Apr;11(2):177-94 [PMID: 20089508]

Grants

  1. R01 NS060910/NINDS NIH HHS
  2. R01 NS060910-01A2/NINDS NIH HHS
  3. R01 NS060910-02/NINDS NIH HHS
  4. R01 NS060910-03/NINDS NIH HHS

Word Cloud

Created with Highcharts 10.0.0BayesiananalysisfunctionalsoftwaremodelsusingWinBUGS1excellentpropertiesbasesmodelprovidesprovideuserfriendlydata4contextdueto:dimensionalityreductionleadslowdimensionalprojection2mixedrepresentationmodularapproachextension3orthogonalityprincipalcomponentcontributeschainconvergencemixingpaperoneessentialreasonmodels:existenceFunctionalDataAnalysisUsing

Similar Articles

Cited By