Spatial organization of mesenchymal stem cells in vitro--results from a new individual cell-based model with podia.

Martin Hoffmann, Jens-Peer Kuska, Matthias Zscharnack, Markus Loeffler, Joerg Galle
Author Information
  1. Martin Hoffmann: Biomathematics and Bioinformatics Group, Department of Knowledge Engineering, Maastricht University, Maastricht, The Netherlands. martin.hoffmann@maastrichtuniversity.nl

Abstract

Therapeutic application of mesenchymal stem cells (MSC) requires their extensive in vitro expansion. MSC in culture typically grow to confluence within a few weeks. They show spindle-shaped fibroblastoid morphology and align to each other in characteristic spatial patterns at high cell density. We present an individual cell-based model (IBM) that is able to quantitatively describe the spatio-temporal organization of MSC in culture. Our model substantially improves on previous models by explicitly representing cell podia and their dynamics. It employs podia-generated forces for cell movement and adjusts cell behavior in response to cell density. At the same time, it is simple enough to simulate thousands of cells with reasonable computational effort. Experimental sheep MSC cultures were monitored under standard conditions. Automated image analysis was used to determine the location and orientation of individual cells. Our simulations quantitatively reproduced the observed growth dynamics and cell-cell alignment assuming cell density-dependent proliferation, migration, and morphology. In addition to cell growth on plain substrates our model captured cell alignment on micro-structured surfaces. We propose a specific surface micro-structure that according to our simulations can substantially enlarge cell culture harvest. The 'tool box' of cell migratory behavior newly introduced in this study significantly enhances the bandwidth of IBM. Our approach is capable of accommodating individual cell behavior and collective cell dynamics of a variety of cell types and tissues in computational systems biology.

References

  1. Phys Biol. 2008 Apr 10;5(1):015002 [PMID: 18403827]
  2. PLoS Comput Biol. 2007 Dec;3(12):e253 [PMID: 18166072]
  3. Biol Lett. 2011 Apr 23;7(2):163-5 [PMID: 21068027]
  4. Biophys J. 2001 Aug;81(2):767-84 [PMID: 11463624]
  5. J Biomed Mater Res A. 2008 May;85(2):313-25 [PMID: 17688290]
  6. Exp Hematol. 2008 Aug;36(8):1035-46 [PMID: 18504067]
  7. BMC Syst Biol. 2010 May 27;4:73 [PMID: 20507570]
  8. Phys Rev Lett. 2007 Dec 14;99(24):248101 [PMID: 18233492]
  9. J Theor Biol. 2007 Aug 7;247(3):554-73 [PMID: 17466340]
  10. Nonlinearity. 2006;19(1):C1-C10 [PMID: 19526066]
  11. Biophys J. 2005 Aug;89(2):782-95 [PMID: 15879474]
  12. Int J Biochem Cell Biol. 2004 Apr;36(4):568-84 [PMID: 15010324]
  13. Biomaterials. 2006 Sep;27(27):4783-93 [PMID: 16735063]
  14. Cell Prolif. 2009 Oct;42(5):602-16 [PMID: 19614674]
  15. J Cell Sci. 2004 Jun 15;117(Pt 14):2971-81 [PMID: 15173316]
  16. Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jan;63(1 Pt 2):017101 [PMID: 11304390]
  17. J Cell Mol Med. 2007 Sep-Oct;11(5):1012-30 [PMID: 17979880]
  18. PLoS One. 2008 Aug 13;3(8):e2922 [PMID: 18698344]
  19. Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19052-9 [PMID: 19060196]
  20. J Theor Biol. 2007 Apr 7;245(3):576-94 [PMID: 17188306]
  21. J Cell Biol. 2006 Sep 11;174(6):767-72 [PMID: 16966418]
  22. Nature. 2002 Jul 4;418(6893):41-9 [PMID: 12077603]
  23. Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2130-5 [PMID: 19179282]
  24. Cancer Res. 2005 Apr 15;65(8):3035-9 [PMID: 15833829]
  25. Am J Sports Med. 2010 Sep;38(9):1857-69 [PMID: 20508078]
  26. Arthritis Res Ther. 2008;10(5):223 [PMID: 18947375]
  27. Curr Top Dev Biol. 2008;81:157-82 [PMID: 18023727]
  28. Phys Rev Lett. 2000 Jul 24;85(4):880-3 [PMID: 10991422]
  29. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3213-8 [PMID: 10725391]
  30. Biophys J. 2007 Sep 1;93(5):1797-808 [PMID: 17483177]
  31. J Theor Biol. 2008 Aug 21;253(4):701-16 [PMID: 18550085]
  32. Phys Biol. 2011 Aug;8(4):045007 [PMID: 21750367]
  33. Nat Neurosci. 2000 Mar;3(3):231-7 [PMID: 10700254]
  34. PLoS One. 2010 Dec 28;5(12):e14441 [PMID: 21203432]
  35. PLoS One. 2009 Aug 04;4(8):e6498 [PMID: 19652709]
  36. Nat Cell Biol. 2007 Feb;9(2):193-200 [PMID: 17220879]
  37. Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11570-5 [PMID: 19556544]
  38. PLoS One. 2008 May 07;3(5):e2093 [PMID: 18461173]
  39. Bioinformatics. 2010 Oct 15;26(20):2641-2 [PMID: 20709692]
  40. Regen Med. 2008 Nov;3(6):877-92 [PMID: 18947310]
  41. J Cell Physiol. 2001 Jun;187(3):345-55 [PMID: 11319758]
  42. J Neurosci. 2003 Aug 6;23(18):7129-42 [PMID: 12904473]
  43. Biophys J. 2005 Jan;88(1):62-75 [PMID: 15475585]
  44. Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13626-30 [PMID: 20643957]
  45. Cell. 2006 Aug 25;126(4):677-89 [PMID: 16923388]
  46. Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):459-63 [PMID: 18182493]
  47. Cytometry A. 2006 Jul;69(7):704-10 [PMID: 16807896]
  48. Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15346-51 [PMID: 18832176]
  49. Dev Biol. 2006 Jan 1;289(1):44-54 [PMID: 16325173]
  50. Science. 1999 Apr 2;284(5411):143-7 [PMID: 10102814]
  51. Cell Prolif. 2009 Aug;42(4):471-84 [PMID: 19594581]
  52. Dev Biol. 2011 Mar 1;351(1):217-28 [PMID: 20977902]
  53. Cells Tissues Organs. 2009;190(2):81-93 [PMID: 19033681]
  54. Stem Cells. 2004;22(7):1152-67 [PMID: 15579636]
  55. FASEB J. 2002 Aug;16(10):1195-204 [PMID: 12153987]
  56. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9467-71 [PMID: 10944216]
  57. Bone. 2006 Sep;39(3):513-22 [PMID: 16616713]
  58. Development. 2010 May;137(9):1407-20 [PMID: 20388652]
  59. Science. 2009 Apr 10;324(5924):208-12 [PMID: 19359578]
  60. PLoS Comput Biol. 2008 Sep 19;4(9):e1000163 [PMID: 18802455]
  61. Int J Nanomedicine. 2007;2(3):389-406 [PMID: 18019838]
  62. J Cell Physiol. 2004 Jan;198(1):110-8 [PMID: 14584050]
  63. PLoS Biol. 2007 Oct 30;5(11):e302 [PMID: 18044986]
  64. Nat Methods. 2010 Sep;7(9):733-6 [PMID: 20676108]
  65. Cancer Res. 2009 Jul 1;69(13):5331-9 [PMID: 19509230]
  66. Cytokine Growth Factor Rev. 2009 Oct-Dec;20(5-6):429-34 [PMID: 19926515]
  67. Trends Immunol. 2009 Apr;30(4):157-64 [PMID: 19282244]
  68. Cell Immunol. 1996 Aug 25;172(1):43-51 [PMID: 8806805]
  69. Bull Math Biol. 2006 Jul;68(5):1169-211 [PMID: 16794915]
  70. Nat Mater. 2007 Dec;6(12):997-1003 [PMID: 17891143]
  71. Exp Cell Res. 2002 Jan 15;272(2):153-62 [PMID: 11777340]
  72. Exp Hematol. 2009 Apr;37(4):504-13 [PMID: 19216019]
  73. FASEB J. 2008 Jun;22(6):1649-59 [PMID: 18180334]
  74. Phys Rev Lett. 2002 Jul 29;89(5):058101 [PMID: 12144468]
  75. J Math Biol. 2009 Jan;58(1-2):261-83 [PMID: 18386011]
  76. J Pathol. 2009 Jan;217(2):318-24 [PMID: 19023885]
  77. Science. 2008 Dec 12;322(5908):1687-91 [PMID: 19074349]
  78. Bull Math Biol. 2006 Oct;68(7):1819-36 [PMID: 16817028]
  79. J Neurosci. 1996 May 1;16(9):2983-94 [PMID: 8622128]
  80. Cells Tissues Organs. 2002;172(3):174-89 [PMID: 12476047]
  81. J Math Biol. 2009 Apr;58(4-5):657-87 [PMID: 18841363]
  82. Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7841-5 [PMID: 11427725]
  83. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Dec;74(6 Pt 1):061908 [PMID: 17280097]
  84. Dev Biol. 1981 Jul 30;85(2):446-62 [PMID: 7196351]
  85. Nat Rev Mol Cell Biol. 2010 Jun;11(6):453-8 [PMID: 20445546]
  86. Science. 2007 Jul 6;317(5834):105-8 [PMID: 17615353]
  87. Biophys J. 2008 May 15;94(10):3839-52 [PMID: 18234810]
  88. Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10448-53 [PMID: 10984537]

MeSH Term

Animals
Cell Count
Cell Division
Cell Movement
Cell Proliferation
Cells, Cultured
Colony-Forming Units Assay
Mesenchymal Stem Cells
Models, Biological
Pseudopodia
Sheep

Word Cloud

Created with Highcharts 10.0.0cellcellsMSCindividualmodelculturedynamicsbehaviormesenchymalstemmorphologydensitycell-basedIBMquantitativelyorganizationsubstantiallypodiacomputationalsimulationsgrowthalignmentTherapeuticapplicationrequiresextensivevitroexpansiontypicallygrowconfluencewithinweeksshowspindle-shapedfibroblastoidaligncharacteristicspatialpatternshighpresentabledescribespatio-temporalimprovespreviousmodelsexplicitlyrepresentingemployspodia-generatedforcesmovementadjustsresponsetimesimpleenoughsimulatethousandsreasonableeffortExperimentalsheepculturesmonitoredstandardconditionsAutomatedimageanalysisuseddeterminelocationorientationreproducedobservedcell-cellassumingdensity-dependentproliferationmigrationadditionplainsubstratescapturedmicro-structuredsurfacesproposespecificsurfacemicro-structureaccordingcanenlargeharvest'toolbox'migratorynewlyintroducedstudysignificantlyenhancesbandwidthapproachcapableaccommodatingcollectivevarietytypestissuessystemsbiologySpatialvitro--resultsnew

Similar Articles

Cited By