Regulation of Neuronal Function by Ras-GRF Exchange Factors.

Larry A Feig
Author Information
  1. Larry A Feig: Departments of Biochemistry and Neuroscience, Tufts University School of Medicine, Boston, MA, USA.

Abstract

Ras-GRF1 (GRF1) and Ras-GRF2 (GRF2) constitute a family of guanine nucleotide exchange factors (GEFs). The main isoforms, p140-GRF1 and p135-GRF2, have 2 GEF domains that give them the capacity to activate both Ras and Rac GTPases in response to signals from a variety of neurotransmitter receptors. GRF1 and GRF2 proteins are found predominantly in adult neurons of the central nervous system, although they can also be detected in a limited number of other tissues. p140-GRF1 and p135-GRF2 contain calcium/calmodulin-binding IQ domains that allow them to act as calcium sensors to mediate the actions of NMDA-type and calcium-permeable AMPA-type glutamate receptors. p140-GRF1 also mediates the action of dopamine receptors that signal through cAMP. Although p140-GRF1 and p135-GRF2 have similar functional domains, studies of GRF knockout mice show that they can play strikingly different roles in regulating MAP kinase family members, neuronal synaptic plasticity, specific forms of learning and memory, and behavioral responses to psychoactive drugs. In addition, the function of GRF proteins may vary in different regions of the brain. Alternative splice variants yielding smaller GRF1 gene isoforms with fewer functional domains also exist; however, their distinct roles in neurons have not been revealed. Continuing studies of these proteins should yield important insights into the biochemical basis of brain function as well as novel concepts to explain how complex signal transduction proteins, like Ras-GRFs, integrate multiple upstream signals into specific downstream outputs to control brain function.

Keywords

References

  1. Mol Cell Biol. 2006 Dec;26(24):9564-70 [PMID: 17030618]
  2. Nat Neurosci. 2006 May;9(5):602-4 [PMID: 16582904]
  3. J Neurosci. 2008 Jun 4;28(23):6000-9 [PMID: 18524905]
  4. FEBS Lett. 1999 Oct 29;460(2):357-62 [PMID: 10544264]
  5. Exp Cell Res. 1997 Aug 25;235(1):117-23 [PMID: 9281359]
  6. J Biol Chem. 1997 Jul 25;272(30):18602-7 [PMID: 9228027]
  7. J Biol Chem. 2001 Oct 12;276(41):38029-35 [PMID: 11500499]
  8. Structure. 2009 Jan 14;17(1):41-53 [PMID: 19141281]
  9. Science. 1990 Apr 6;248(4951):67-9 [PMID: 2181667]
  10. EMBO J. 2007 Nov 28;26(23):4879-90 [PMID: 17972919]
  11. Oncogene. 1996 Mar 7;12(5):1097-107 [PMID: 8649802]
  12. Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21824-9 [PMID: 21115823]
  13. Trends Neurosci. 2006 Dec;29(12):695-703 [PMID: 17084911]
  14. Neuron. 2003 Nov 13;40(4):775-84 [PMID: 14622581]
  15. Biochim Biophys Acta. 2011 Apr;1815(2):170-88 [PMID: 21111786]
  16. J Physiol. 2005 Mar 1;563(Pt 2):345-58 [PMID: 15649985]
  17. Nature. 1995 Aug 10;376(6540):524-7 [PMID: 7637786]
  18. Mol Cell Neurosci. 2004 Mar;25(3):355-62 [PMID: 15033164]
  19. EMBO J. 2003 Jun 16;22(12):3039-49 [PMID: 12805218]
  20. Brain Res Mol Brain Res. 1997 Aug;48(1):140-4 [PMID: 9379834]
  21. Brain Res Mol Brain Res. 1993 Sep;19(4):339-44 [PMID: 8231737]
  22. Nat Genet. 2002 Jan;30(1):92-6 [PMID: 11753386]
  23. Nature. 1996 Jul 18;382(6588):268-72 [PMID: 8717044]
  24. Nature. 1998 May 14;393(6681):125-6 [PMID: 9603515]
  25. Eur J Biochem. 2001 Jun;268(11):3275-83 [PMID: 11389730]
  26. Science. 1987 Mar 6;235(4793):1218-21 [PMID: 3547648]
  27. Prog Nucleic Acid Res Mol Biol. 2002;71:391-444 [PMID: 12102558]
  28. J Neurosci. 2005 Jul 20;25(29):6907-10 [PMID: 16033900]
  29. Mol Cell Biol. 1991 Jan;11(1):202-12 [PMID: 1986220]
  30. Curr Opin Neurobiol. 2006 Jun;16(3):288-97 [PMID: 16713244]
  31. Neurosci Res. 1995 Feb;21(4):317-22 [PMID: 7777222]
  32. Genes Brain Behav. 2011 Jun;10(4):392-403 [PMID: 21251221]
  33. Physiol Rev. 2001 Jan;81(1):153-208 [PMID: 11152757]
  34. Mol Cell Neurosci. 2001 Dec;18(6):691-701 [PMID: 11749043]
  35. Mol Cell Biol. 2005 Dec;25(24):11184-90 [PMID: 16314537]
  36. Mol Cell Biol. 2004 Feb;24(4):1516-30 [PMID: 14749369]
  37. Eur J Pharmacol. 2009 Oct 1;619(1-3):50-6 [PMID: 19686726]
  38. J Biol Chem. 1994 Apr 8;269(14):10217-20 [PMID: 8144601]
  39. J Neurosci. 2004 Oct 6;24(40):8885-95 [PMID: 15470155]
  40. Nature. 1992 Jul 23;358(6384):351-4 [PMID: 1379346]
  41. J Neurophysiol. 2007 Oct;98(4):2488-92 [PMID: 17652419]
  42. Cell. 1987 Mar 13;48(5):789-99 [PMID: 3545497]
  43. EMBO J. 1992 Jun;11(6):2151-7 [PMID: 1376246]
  44. Curr Biol. 2006 Dec 5;16(23):2303-13 [PMID: 17141611]
  45. Ann N Y Acad Sci. 1999 Apr 30;868:515-25 [PMID: 10414328]
  46. PLoS One. 2009;4(2):e4339 [PMID: 19190753]
  47. J Mol Neurosci. 2009 Feb;37(2):111-22 [PMID: 18584336]
  48. J Neurosci. 2007 Nov 21;27(47):12967-76 [PMID: 18032670]
  49. Neurosignals. 2006-2007;15(4):157-73 [PMID: 16921254]
  50. Biol Psychiatry. 2009 Oct 15;66(8):758-68 [PMID: 19446794]
  51. Neurosci Lett. 2007 Nov 5;427(2):117-21 [PMID: 17931779]
  52. Cell Signal. 1999 Aug;11(8):603-10 [PMID: 10433521]
  53. EMBO J. 1992 Nov;11(11):4007-15 [PMID: 1396590]
  54. Curr Biol. 1998 Jul 30-Aug 13;8(16):935-8 [PMID: 9707409]
  55. Neuron. 2007 Sep 6;55(5):779-85 [PMID: 17785184]
  56. EMBO J. 2004 Apr 7;23(7):1567-75 [PMID: 15029245]
  57. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7100-4 [PMID: 1379731]
  58. Mol Cell Biol. 1997 Mar;17(3):1396-406 [PMID: 9032266]
  59. Exp Cell Res. 1994 Feb;210(2):353-7 [PMID: 8299730]
  60. Curr Opin Neurobiol. 2001 Jun;11(3):327-35 [PMID: 11399431]
  61. Neuropharmacology. 2008 Dec;55(7):1081-94 [PMID: 18755202]
  62. Trends Neurosci. 2007 Jun;30(6):284-91 [PMID: 17418904]
  63. Sci STKE. 2002 Aug 13;2002(145):pe36 [PMID: 12177507]
  64. Genomics. 1998 Apr 1;49(1):30-7 [PMID: 9570946]
  65. J Neurochem. 2009 Jul;110(2):641-52 [PMID: 19457086]
  66. J Biol Chem. 2003 May 23;278(21):18833-41 [PMID: 12531897]
  67. Synapse. 1992 Aug;11(4):310-8 [PMID: 1354397]
  68. J Biol Chem. 2006 Mar 17;281(11):7578-82 [PMID: 16407208]
  69. Biochim Biophys Acta. 2008 Dec;1786(2):178-87 [PMID: 18541156]
  70. Neuron. 2005 Jun 2;46(5):745-60 [PMID: 15924861]
  71. Gene. 2002 May 29;291(1-2):287-97 [PMID: 12095702]
  72. Hippocampus. 2005;15(5):562-78 [PMID: 15884034]
  73. Mol Cell Biol. 2002 Jun;22(12):4073-85 [PMID: 12024021]
  74. Nature. 1998 Aug 13;394(6694):683-7 [PMID: 9716132]
  75. FEBS Lett. 1997 Apr 21;407(1):111-5 [PMID: 9141492]
  76. Mamm Genome. 2009 Sep-Oct;20(9-10):654-63 [PMID: 19513790]
  77. J Neurosci. 2009 Feb 4;29(5):1496-502 [PMID: 19193896]
  78. Mol Cell Biol. 2002 Apr;22(8):2498-504 [PMID: 11909944]
  79. Nature. 1997 Nov 20;390(6657):281-6 [PMID: 9384379]
  80. Nat Genet. 2010 Oct;42(10):902-5 [PMID: 20835236]
  81. J Neurosci. 2005 Sep 14;25(37):8386-90 [PMID: 16162920]
  82. Mol Cell Biol. 1996 Sep;16(9):4888-96 [PMID: 8756648]
  83. J Biol Chem. 1997 Mar 7;272(10):6671-6 [PMID: 9045698]
  84. J Biol Chem. 2005 Jan 7;280(1):225-35 [PMID: 15513915]
  85. Curr Mol Med. 2002 Nov;2(7):649-65 [PMID: 12420804]
  86. Neurosignals. 2003 Sep-Oct;12(4-5):200-8 [PMID: 14673206]
  87. PLoS One. 2010 Jul 22;5(7):e11732 [PMID: 20661302]
  88. J Neurosci. 2002 Sep 1;22(17):7380-8 [PMID: 12196559]
  89. J Neurosci. 2006 Feb 8;26(6):1721-9 [PMID: 16467520]
  90. Sci STKE. 2006 Oct 10;2006(356):re11 [PMID: 17033044]
  91. J Biol Chem. 2000 Jun 30;275(26):20020-6 [PMID: 10777492]
  92. J Biol Chem. 2003 Apr 11;278(15):13278-85 [PMID: 12538592]
  93. J Biol Chem. 2000 Sep 22;275(38):29788-93 [PMID: 10882715]
  94. Hippocampus. 1995;5(6):546-56 [PMID: 8646281]
  95. PLoS Comput Biol. 2006 Dec 22;2(12):e176 [PMID: 17194217]
  96. Neuropharmacology. 2001 Nov;41(6):791-800 [PMID: 11640934]
  97. Behav Neurosci. 1998 Aug;112(4):863-74 [PMID: 9733192]
  98. J Neurosci. 2004 Sep 8;24(36):7821-8 [PMID: 15356193]
  99. Oncogene. 1993 Jun;8(6):1477-85 [PMID: 7684828]
  100. Science. 2004 May 14;304(5673):1021-4 [PMID: 15143284]
  101. J Neurosci. 2004 May 5;24(18):4421-31 [PMID: 15128856]
  102. J Biol Chem. 1999 Aug 27;274(35):24449-52 [PMID: 10455104]
  103. Curr Opin Neurobiol. 2011 Apr;21(2):291-8 [PMID: 21295464]
  104. J Neurosci. 1997 Apr 1;17(7):2469-76 [PMID: 9065507]
  105. Mamm Genome. 2003 Aug;14(8):495-505 [PMID: 12925882]
  106. Biochimie. 2009 Mar;91(3):320-8 [PMID: 19022332]
  107. J Neurosci. 2005 Feb 2;25(5):1281-90 [PMID: 15689566]
  108. Mol Cell Biol. 2005 Jun;25(11):4602-14 [PMID: 15899863]

Grants

  1. R01 MH083324/NIMH NIH HHS
  2. R01 MH083324-23/NIMH NIH HHS

Word Cloud

Created with Highcharts 10.0.0p140-GRF1domainsproteinsGRF1p135-GRF2receptorsneuronsalsofunctionbrainGRF2familyisoformsRassignalscansignalfunctionalstudiesGRFdifferentrolessynapticplasticityspecificRas-GRFRas-GRF1Ras-GRF2constituteguaninenucleotideexchangefactorsGEFsmain2GEFgivecapacityactivateRacGTPasesresponsevarietyneurotransmitterfoundpredominantlyadultcentralnervoussystemalthoughdetectedlimitednumbertissuescontaincalcium/calmodulin-bindingIQallowactcalciumsensorsmediateactionsNMDA-typecalcium-permeableAMPA-typeglutamatemediatesactiondopaminecAMPAlthoughsimilarknockoutmiceshowplaystrikinglyregulatingMAPkinasemembersneuronalformslearningmemorybehavioralresponsespsychoactivedrugsadditionmayvaryregionsAlternativesplicevariantsyieldingsmallergenefewerexisthoweverdistinctrevealedContinuingyieldimportantinsightsbiochemicalbasiswellnovelconceptsexplaincomplextransductionlikeRas-GRFsintegratemultipleupstreamdownstreamoutputscontrolRegulationNeuronalFunctionExchangeFactors

Similar Articles

Cited By