Iterative multi-atlas-based multi-image segmentation with tree-based registration.

Hongjun Jia, Pew-Thian Yap, Dinggang Shen
Author Information
  1. Hongjun Jia: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA. jiahj@med.unc.edu

Abstract

In this paper, we present a multi-atlas-based framework for accurate, consistent and simultaneous segmentation of a group of target images. Multi-atlas-based segmentation algorithms consider concurrently complementary information from multiple atlases to produce optimal segmentation outcomes. However, the accuracy of these algorithms relies heavily on the precise alignment of the atlases with the target image. In particular, the commonly used pairwise registration may result in inaccurate alignment especially between images with large shape differences. Additionally, when segmenting a group of target images, most current methods consider these images independently with disregard of their correlation, thus resulting in inconsistent segmentations of the same structures across different target images. We propose two novel strategies to address these limitations: 1) a novel tree-based groupwise registration method for concurrent alignment of both the atlases and the target images, and 2) an iterative groupwise segmentation method for simultaneous consideration of segmentation information propagated from all available images, including the atlases and other newly segmented target images. Evaluation based on various datasets indicates that the proposed multi-atlas-based multi-image segmentation (MABMIS) framework yields substantial improvements in terms of consistency and accuracy over methods that do not consider the group of target images holistically.

References

  1. Neuroimage. 2010 Oct 1;52(4):1355-66 [PMID: 20441794]
  2. IEEE Trans Med Imaging. 1998 Feb;17(1):87-97 [PMID: 9617910]
  3. Med Image Comput Comput Assist Interv. 2010;13(Pt 1):349-56 [PMID: 20879250]
  4. Med Phys. 2008 Apr;35(4):1407-17 [PMID: 18491536]
  5. Hum Brain Mapp. 2002 Nov;17(3):143-55 [PMID: 12391568]
  6. Neuroimage. 2011 May 1;56(1):126-39 [PMID: 21296166]
  7. Neuroimage. 2010 Jun;51(2):684-93 [PMID: 20171290]
  8. Neuroimage. 2004;23 Suppl 1:S208-19 [PMID: 15501092]
  9. IEEE Trans Med Imaging. 2009 Aug;28(8):1266-77 [PMID: 19228554]
  10. Med Image Comput Comput Assist Interv. 2010;13(Pt 2):306-14 [PMID: 20879329]
  11. Med Image Anal. 2002 Jun;6(2):129-42 [PMID: 12045000]
  12. Neuroimage. 2004;23 Suppl 1:S151-60 [PMID: 15501084]
  13. IEEE Trans Med Imaging. 2002 Nov;21(11):1421-39 [PMID: 12575879]
  14. IEEE Trans Med Imaging. 2010 Oct;29(10):1714-29 [PMID: 20562040]
  15. IEEE Trans Med Imaging. 2010 Dec;29(12):2000-8 [PMID: 20667809]
  16. Neuroimage. 2010 Feb 1;49(3):2352-65 [PMID: 19857578]
  17. Neuroimage. 2010 Feb 1;49(3):2457-66 [PMID: 19818860]
  18. IEEE Trans Med Imaging. 2001 Jul;20(7):568-82 [PMID: 11465464]
  19. IEEE Trans Med Imaging. 2001 Jan;20(1):45-57 [PMID: 11293691]
  20. Neuroimage. 2009 Jul 1;46(3):726-38 [PMID: 19245840]
  21. Neuroimage. 2011 Jan 15;54(2):928-39 [PMID: 20851197]
  22. Hum Brain Mapp. 2012 Feb;33(2):253-71 [PMID: 21391266]
  23. IEEE Trans Med Imaging. 2009 Jul;28(7):1000-10 [PMID: 19131298]
  24. Med Image Comput Comput Assist Interv. 2009;12(Pt 1):680-7 [PMID: 20426047]
  25. Neuroimage. 2009 Mar;45(1 Suppl):S61-72 [PMID: 19041946]
  26. Neuroimage. 2009 Oct 1;47(4):1277-87 [PMID: 19285145]
  27. Neuroimage. 2007 Feb 15;34(4):1612-8 [PMID: 17188896]
  28. Med Image Anal. 2010 Oct;14(5):633-42 [PMID: 20580597]
  29. Neuroimage. 2008 Feb 1;39(3):1064-80 [PMID: 18037310]
  30. Neuroimage. 2009 Jul 1;46(3):786-802 [PMID: 19195496]
  31. Neuroimage. 2004 Apr;21(4):1428-42 [PMID: 15050568]
  32. Neuroimage. 2007 Nov 15;38(3):461-77 [PMID: 17888685]
  33. Neuroimage. 2010 Jul 1;51(3):1057-70 [PMID: 20226255]

Grants

  1. R01 EB008374/NIBIB NIH HHS
  2. R01 EB006733/NIBIB NIH HHS
  3. RC1 MH088520-01/NIMH NIH HHS
  4. MH088520/NIMH NIH HHS
  5. EB008760/NIBIB NIH HHS
  6. EB009634/NIBIB NIH HHS
  7. EB006733/NIBIB NIH HHS
  8. R01 EB008374-01A2/NIBIB NIH HHS
  9. EB008374/NIBIB NIH HHS
  10. R01 EB009634/NIBIB NIH HHS
  11. R01 EB009634-01A1/NIBIB NIH HHS
  12. RC1 MH088520/NIMH NIH HHS

MeSH Term

Algorithms
Brain
Brain Mapping
Humans
Image Interpretation, Computer-Assisted
Pattern Recognition, Automated

Word Cloud

Created with Highcharts 10.0.0imagessegmentationtargetatlasesmulti-atlas-basedgroupconsideralignmentregistrationframeworksimultaneousalgorithmsinformationaccuracymethodsnoveltree-basedgroupwisemethodmulti-imagepaperpresentaccurateconsistentMulti-atlas-basedconcurrentlycomplementarymultipleproduceoptimaloutcomesHoweverreliesheavilypreciseimageparticularcommonlyusedpairwisemayresultinaccurateespeciallylargeshapedifferencesAdditionallysegmentingcurrentindependentlydisregardcorrelationthusresultinginconsistentsegmentationsstructuresacrossdifferentproposetwostrategiesaddresslimitations:1concurrent2iterativeconsiderationpropagatedavailableincludingnewlysegmentedEvaluationbasedvariousdatasetsindicatesproposedMABMISyieldssubstantialimprovementstermsconsistencyholisticallyIterative

Similar Articles

Cited By