Handpicking epigenetic marks with PHD fingers.

Catherine A Musselman, Tatiana G Kutateladze
Author Information
  1. Catherine A Musselman: Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA. Tatiana.Kutateladze@ucdenver.edu

Abstract

Plant homeodomain (PHD) fingers have emerged as one of the largest families of epigenetic effectors capable of recognizing or 'reading' post-translational histone modifications and unmodified histone tails. These interactions are highly specific and can be modulated by the neighboring epigenetic marks and adjacent effectors. A few PHD fingers have recently been found to also associate with non-histone proteins. In this review, we detail the molecular mechanisms and biological outcomes of the histone and non-histone targeting by PHD fingers. We discuss the significance of crosstalk between the histone modifications and consequences of combinatorial readout for selective recruitment of the PHD finger-containing components of chromatin remodeling and transcriptional complexes.

References

  1. J Biol Chem. 2011 Apr 1;286(13):11779-91 [PMID: 21278251]
  2. EMBO Rep. 2009 Nov;10(11):1235-41 [PMID: 19834512]
  3. Annu Rev Genet. 2009;43:559-99 [PMID: 19886812]
  4. Biochem J. 2009 Sep 25;423(2):179-87 [PMID: 19624289]
  5. Biochemistry. 2010 Aug 10;49(31):6576-86 [PMID: 20677832]
  6. EMBO Rep. 2008 Apr;9(4):370-6 [PMID: 18292755]
  7. Nat Chem Biol. 2010 Apr;6(4):283-90 [PMID: 20190764]
  8. J Mol Biol. 2010 Jul 9;400(2):137-44 [PMID: 20452361]
  9. Nature. 1997 Sep 18;389(6648):251-60 [PMID: 9305837]
  10. Structure. 2008 Aug 6;16(8):1245-56 [PMID: 18682226]
  11. Cell. 2007 Feb 23;128(4):693-705 [PMID: 17320507]
  12. Plant J. 1993 Jul;4(1):137-50 [PMID: 8106082]
  13. Mol Cell. 2008 May 23;30(4):507-18 [PMID: 18498752]
  14. Science. 2000 May 26;288(5470):1422-5 [PMID: 10827952]
  15. Cell. 2008 Oct 17;135(2):272-83 [PMID: 18957202]
  16. Nature. 2010 Dec 16;468(7326):927-32 [PMID: 21164480]
  17. J Mol Biol. 2010 Jul 9;400(2):145-54 [PMID: 20460131]
  18. Science. 2001 Aug 10;293(5532):1074-80 [PMID: 11498575]
  19. Nature. 2007 Oct 18;449(7164):928-32 [PMID: 17898715]
  20. J Biol Chem. 2008 Jun 6;283(23):15956-64 [PMID: 18381289]
  21. Nature. 2007 Aug 9;448(7154):714-7 [PMID: 17687327]
  22. Mol Cell. 2006 Dec 8;24(5):785-796 [PMID: 17157260]
  23. Immunity. 2007 Oct;27(4):561-71 [PMID: 17936034]
  24. Genes Dev. 2008 Sep 1;22(17):2370-84 [PMID: 18765789]
  25. Mol Cell Biol. 2001 May;21(10):3589-97 [PMID: 11313484]
  26. Nat Struct Mol Biol. 2010 Jan;17(1):38-43 [PMID: 20023638]
  27. Nature. 2007 Oct 18;449(7164):933-7 [PMID: 17898714]
  28. Cell. 2011 May 27;145(5):692-706 [PMID: 21596426]
  29. Proteins. 2008 Sep;72(4):1371-6 [PMID: 18623064]
  30. J Biol Chem. 2010 Mar 26;285(13):9322-9326 [PMID: 20129925]
  31. Nature. 2006 Jul 6;442(7098):96-9 [PMID: 16728974]
  32. J Mol Biol. 2008 Jul 4;380(2):303-12 [PMID: 18533182]
  33. Nature. 2007 Dec 13;450(7172):1106-10 [PMID: 18033247]
  34. Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15878-83 [PMID: 18840680]
  35. Cell Res. 2010 Aug;20(8):886-98 [PMID: 20567261]
  36. Cell Res. 2011 Mar;21(3):381-95 [PMID: 21321607]
  37. Curr Biol. 2011 Jan 11;21(1):53-8 [PMID: 21167713]
  38. Nature. 2006 Jul 6;442(7098):100-3 [PMID: 16728977]
  39. Cell. 2010 Jun 25;141(7):1183-94 [PMID: 20541251]
  40. Mol Interv. 2009 Dec;9(6):314-23 [PMID: 20048137]
  41. J Mol Biol. 2010 Sep 3;401(5):969-84 [PMID: 20637214]
  42. Nature. 1999 Jun 3;399(6735):491-6 [PMID: 10365964]
  43. Nature. 2010 Jul 8;466(7303):258-62 [PMID: 20613843]
  44. Nucleic Acids Res. 2009 May;37(9):2951-61 [PMID: 19293276]
  45. Nat Rev Mol Cell Biol. 2007 Dec;8(12):983-94 [PMID: 18037899]
  46. Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):18993-8 [PMID: 18025461]
  47. Nature. 2006 Jul 6;442(7098):91-5 [PMID: 16728978]
  48. Mol Cell. 2009 Jan 30;33(2):248-56 [PMID: 19187765]
  49. Science. 2002 Mar 15;295(5562):2080-3 [PMID: 11859155]
  50. Nat Struct Mol Biol. 2011 Jun 12;18(7):769-76 [PMID: 21666679]
  51. Nature. 2010 Jul 22;466(7305):503-7 [PMID: 20622853]
  52. Nature. 2007 Aug 9;448(7154):718-22 [PMID: 17687328]
  53. Nat Struct Mol Biol. 2007 Nov;14(11):1025-1040 [PMID: 17984965]
  54. Nat Struct Mol Biol. 2010 Apr;17(4):445-50 [PMID: 20208542]
  55. Nature. 2000 Jan 6;403(6765):41-5 [PMID: 10638745]
  56. Cell. 2002 Nov 1;111(3):285-91 [PMID: 12419240]
  57. Cell. 2007 Oct 5;131(1):58-69 [PMID: 17884155]
  58. Mol Cell. 2006 Jan 6;21(1):51-64 [PMID: 16387653]
  59. J Biol Chem. 2007 Jan 26;282(4):2450-5 [PMID: 17142463]
  60. Nature. 2007 May 24;447(7143):407-12 [PMID: 17522673]
  61. Nature. 2009 Jun 11;459(7248):847-51 [PMID: 19430464]
  62. Cell. 2007 Mar 23;128(6):1077-88 [PMID: 17320160]
  63. Structure. 2009 May 13;17(5):670-9 [PMID: 19446523]
  64. Nature. 2002 Mar 7;416(6876):103-7 [PMID: 11882902]
  65. Mol Cell Biol. 2006 Nov;26(21):7871-9 [PMID: 16923967]
  66. Mol Cell. 2009 Jan 30;33(2):257-65 [PMID: 19187766]
  67. Nature. 2006 Jul 6;442(7098):86-90 [PMID: 16728976]

Grants

  1. CA113472/NCI NIH HHS
  2. GM071424/NIGMS NIH HHS

MeSH Term

Chromatin Assembly and Disassembly
Epigenesis, Genetic
Histones
Homeodomain Proteins
Protein Binding
Protein Processing, Post-Translational
Protein Structure, Tertiary
Transcription, Genetic

Chemicals

Histones
Homeodomain Proteins

Word Cloud

Created with Highcharts 10.0.0PHDfingershistoneepigeneticeffectorsmodificationsmarksnon-histonePlanthomeodomainemergedonelargestfamiliescapablerecognizing'reading'post-translationalunmodifiedtailsinteractionshighlyspecificcanmodulatedneighboringadjacentrecentlyfoundalsoassociateproteinsreviewdetailmolecularmechanismsbiologicaloutcomestargetingdiscusssignificancecrosstalkconsequencescombinatorialreadoutselectiverecruitmentfinger-containingcomponentschromatinremodelingtranscriptionalcomplexesHandpicking

Similar Articles

Cited By (128)