The bacteriophage lambda gpNu3 scaffolding protein is an intrinsically disordered and biologically functional procapsid assembly catalyst.

Eva Margarita Medina, Benjamin T Andrews, Eri Nakatani, Carlos Enrique Catalano
Author Information
  1. Eva Margarita Medina: Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.

Abstract

Procapsid assembly is a process whereby hundreds of copies of a major capsid protein assemble into an icosahedral protein shell into which the viral genome is packaged. The essential features of procapsid assembly are conserved in both eukaryotic and prokaryotic complex double-stranded DNA viruses. Typically, a portal protein nucleates the co-polymerization of an internal scaffolding protein and the major capsid protein into an icosahedral capsid shell. The scaffolding proteins are essential to procapsid assembly. Here, we describe the solution-based biophysical and functional characterization of the bacteriophage lambda (λ) scaffolding protein gpNu3. The purified protein possesses significant α-helical structure and appears to be partially disordered. Thermally induced denaturation studies indicate that secondary structures are lost in a cooperative, apparent two-state transition (T(m)=40.6±0.3 °C) and that unfolding is, at least in part, reversible. Analysis of the purified protein by size-exclusion chromatography suggests that gpNu3 is highly asymmetric, which contributes to an abnormally large Stokes radius. The size-exclusion chromatography data further indicate that the protein self-associates in a concentration-dependent manner. This was confirmed by analytical ultracentrifugation studies, which reveal a monomer-dimer equilibrium (K(d,app)~50 μM) and an asymmetric protein structure at biologically relevant concentrations. Purified gpNu3 promotes the polymerization of gpE, the λ major capsid protein, into virus-like particles that possess a native-like procapsid morphology. The relevance of this work with respect to procapsid assembly in the complex double-stranded DNA viruses is discussed.

References

  1. Anal Biochem. 2004 Dec 15;335(2):279-88 [PMID: 15556567]
  2. Microbiol Rev. 1978 Sep;42(3):529-76 [PMID: 362149]
  3. Nat Rev Mol Cell Biol. 2005 Mar;6(3):197-208 [PMID: 15738986]
  4. Biochemistry. 1967 Jul;6(7):1948-54 [PMID: 6049437]
  5. Curr Opin Struct Biol. 2010 Apr;20(2):210-6 [PMID: 20149636]
  6. J Mol Biol. 1988 Aug 20;202(4):743-57 [PMID: 3262767]
  7. J Biol Chem. 1997 Mar 21;272(12):7732-5 [PMID: 9065433]
  8. J Mol Biol. 1996 May 3;258(2):286-98 [PMID: 8627626]
  9. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W668-73 [PMID: 15215473]
  10. J Biol Chem. 1996 Mar 29;271(13):7445-9 [PMID: 8631772]
  11. J Mol Biol. 1993 Oct 20;233(4):682-94 [PMID: 8411174]
  12. Biophys J. 2000 Mar;78(3):1606-19 [PMID: 10692345]
  13. J Virol. 1999 May;73(5):4239-50 [PMID: 10196320]
  14. Adv Protein Chem. 2003;64:259-99 [PMID: 13677050]
  15. J Mol Recognit. 2005 Nov-Dec;18(6):479-90 [PMID: 16193532]
  16. Biophys J. 1980 Oct;32(1):103-38 [PMID: 6894706]
  17. Virology. 2000 Sep 15;275(1):133-44 [PMID: 11017795]
  18. J Virol. 1995 Aug;69(8):5024-32 [PMID: 7609072]
  19. Cell. 1980 Sep;21(2):319-31 [PMID: 6447542]
  20. Biochemistry. 1981 Jan 6;20(1):33-7 [PMID: 7470476]
  21. Cell Mol Life Sci. 1999 Nov 15;56(7-8):580-603 [PMID: 11212308]
  22. Virology. 1983 Nov;131(1):100-15 [PMID: 6228056]
  23. J Mol Biol. 2006 Jun 16;359(4):1097-106 [PMID: 16697406]
  24. J Mol Recognit. 2010 Mar-Apr;23(2):105-16 [PMID: 19585546]
  25. J Mol Biol. 2000 Apr 14;297(5):1195-202 [PMID: 10764583]
  26. Int J Biol Macromol. 1998 Jul;23(1):27-36 [PMID: 9644594]
  27. Virology. 2005 Sep 15;340(1):33-45 [PMID: 16045955]
  28. Cold Spring Harb Symp Quant Biol. 1962;27:1-24 [PMID: 14019094]
  29. J Mol Biol. 2006 Apr 7;357(4):1154-66 [PMID: 16476446]
  30. Trends Biochem Sci. 1990 Jan;15(1):14-7 [PMID: 2107612]
  31. Biophys J. 2010 Sep 8;99(5):1350-7 [PMID: 20816046]
  32. J Mol Biol. 1997 May 9;268(3):655-65 [PMID: 9171289]
  33. Virology. 1972 Jun;48(3):824-35 [PMID: 4113245]
  34. Biopolymers. 1977 Aug;16(8):1779-93 [PMID: 890069]
  35. J Mol Biol. 2010 Sep 3;401(5):813-30 [PMID: 20620152]
  36. J Mol Biol. 2008 Sep 19;381(5):1395-406 [PMID: 18582476]
  37. Biochemistry. 2010 Nov 2;49(43):9256-68 [PMID: 20836565]
  38. J Biol Chem. 1992 Jan 5;267(1):455-61 [PMID: 1530932]
  39. Nat Struct Biol. 2003 Jul;10(7):572-6 [PMID: 12778115]
  40. Virology. 2009 Feb 5;384(1):144-50 [PMID: 19064277]
  41. J Mol Biol. 1975 Jan 15;91(2):187-99 [PMID: 1102701]
  42. Annu Rev Genet. 2008;42:647-81 [PMID: 18687036]
  43. Biotechniques. 1991 Dec;11(6):748, 750, 752-3 [PMID: 1809329]
  44. J Mol Biol. 2008 May 2;378(3):551-64 [PMID: 18377930]
  45. J Mol Biol. 2007 Mar 2;366(4):1161-73 [PMID: 17198713]
  46. Biophys J. 1997 Jan;72(1):397-407 [PMID: 8994626]
  47. Anal Biochem. 1986 May 15;155(1):155-67 [PMID: 3717552]
  48. Mol Microbiol. 2004 Nov;54(4):1036-50 [PMID: 15522085]
  49. Adv Virus Res. 2005;64:1-14 [PMID: 16139590]
  50. Anal Biochem. 2003 Sep 1;320(1):104-24 [PMID: 12895474]
  51. Structure. 2008 Sep 10;16(9):1399-406 [PMID: 18786402]

Grants

  1. F32 GM090565/NIGMS NIH HHS
  2. F32 GM090565-02/NIGMS NIH HHS
  3. F32GM-905652/NIGMS NIH HHS

MeSH Term

Amino Acid Sequence
Bacteriophage lambda
Capsid
Hydrolysis
Models, Biological
Molecular Sequence Data
Nuclear Magnetic Resonance, Biomolecular
Protein Folding
Protein Stability
Protein Structure, Secondary
Temperature
Ultracentrifugation
Viral Proteins
Virus Assembly

Chemicals

Viral Proteins

Word Cloud

Created with Highcharts 10.0.0proteinassemblyprocapsidcapsidscaffoldinggpNu3majoricosahedralshellessentialcomplexdouble-strandedDNAvirusesfunctionalbacteriophagelambdaλpurifiedstructuredisorderedstudiesindicatesize-exclusionchromatographyasymmetricbiologicallyProcapsidprocesswherebyhundredscopiesassembleviralgenomepackagedfeaturesconservedeukaryoticprokaryoticTypicallyportalnucleatesco-polymerizationinternalproteinsdescribesolution-basedbiophysicalcharacterizationpossessessignificantα-helicalappearspartiallyThermallyinduceddenaturationsecondarystructureslostcooperativeapparenttwo-statetransitionTm=406±03 °CunfoldingleastpartreversibleAnalysissuggestshighlycontributesabnormallylargeStokesradiusdataself-associatesconcentration-dependentmannerconfirmedanalyticalultracentrifugationrevealmonomer-dimerequilibriumKdapp~50 μMrelevantconcentrationsPurifiedpromotespolymerizationgpEvirus-likeparticlespossessnative-likemorphologyrelevanceworkrespectdiscussedintrinsicallycatalyst

Similar Articles

Cited By