Inference for discretely observed stochastic kinetic networks with applications to epidemic modeling.

Boseung Choi, Grzegorz A Rempala
Author Information
  1. Boseung Choi: Department of Computer Science and Statistics, Daegu University, Gyeongbuk 712-714, Republic of Korea.

Abstract

We present a new method for Bayesian Markov Chain Monte Carlo-based inference in certain types of stochastic models, suitable for modeling noisy epidemic data. We apply the so-called uniformization representation of a Markov process, in order to efficiently generate appropriate conditional distributions in the Gibbs sampler algorithm. The approach is shown to work well in various data-poor settings, that is, when only partial information about the epidemic process is available, as illustrated on the synthetic data from SIR-type epidemics and the Center for Disease Control and Prevention data from the onset of the H1N1 pandemic in the United States.

References

  1. J Infect Dis. 2010 May 15;201(10):1488-97 [PMID: 20384495]
  2. Science. 2003 Jun 20;300(5627):1966-70 [PMID: 12766207]
  3. Math Biosci. 2002 Nov-Dec;180:103-14 [PMID: 12387918]
  4. J Math Biol. 2007 Aug;55(2):223-47 [PMID: 17361423]
  5. PLoS One. 2009 Sep 09;4(9):e6895 [PMID: 19742302]
  6. BMJ. 2009 Jul 14;339:b2840 [PMID: 19602714]
  7. BMC Med. 2009 Sep 10;7:45 [PMID: 19744314]
  8. J Math Biol. 2000 Dec;41(6):559-80 [PMID: 11196585]
  9. Bioinformatics. 2008 Jan 1;24(1):56-62 [PMID: 18003644]
  10. Ann Appl Stat. 2009 Sep 1;3(3):1204 [PMID: 20148133]
  11. Science. 2001 Oct 26;294(5543):813-7 [PMID: 11679661]

Grants

  1. R01 DE019243/NIDCR NIH HHS
  2. R01-DE19243/NIDCR NIH HHS

MeSH Term

Algorithms
Bayes Theorem
Biostatistics
Data Interpretation, Statistical
Epidemics
Humans
Influenza A Virus, H1N1 Subtype
Influenza, Human
Markov Chains
Models, Statistical
Monte Carlo Method
Pandemics
Stochastic Processes
United States

Word Cloud

Created with Highcharts 10.0.0epidemicdataMarkovstochasticmodelingprocesspresentnewmethodBayesianChainMonteCarlo-basedinferencecertaintypesmodelssuitablenoisyapplyso-calleduniformizationrepresentationorderefficientlygenerateappropriateconditionaldistributionsGibbssampleralgorithmapproachshownworkwellvariousdata-poorsettingspartialinformationavailableillustratedsyntheticSIR-typeepidemicsCenterDiseaseControlPreventiononsetH1N1pandemicUnitedStatesInferencediscretelyobservedkineticnetworksapplications

Similar Articles

Cited By (10)