Metabolic imaging: a link between lactate dehydrogenase A, lactate, and tumor phenotype.

Inna Serganova, Asif Rizwan, Xiaohui Ni, Sunitha B Thakur, Jelena Vider, James Russell, Ronald Blasberg, Jason A Koutcher
Author Information
  1. Inna Serganova: Department of Neurology, Memorial Sloan Kettering Cancer Center, 415 E68 Street, New York, NY 10065, USA.
  2. Asif Rizwan: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 415 E68 Street, New York, NY 10065, USA.
  3. Xiaohui Ni: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 415 E68 Street, New York, NY 10065, USA.
  4. Sunitha B Thakur: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 415 E68 Street, New York, NY 10065, USA.
  5. Jelena Vider: Department of Neurology, Memorial Sloan Kettering Cancer Center, 415 E68 Street, New York, NY 10065, USA.
  6. James Russell: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 415 E68 Street, New York, NY 10065, USA.
  7. Ronald Blasberg: Department of Neurology, Memorial Sloan Kettering Cancer Center, 415 E68 Street, New York, NY 10065, USA.
  8. Jason A Koutcher: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 415 E68 Street, New York, NY 10065, USA.

Abstract

PURPOSE: We compared the metabolic profiles and the association between LDH-A expression and Lactate production in two isogenic murine breast cancer cell lines and tumors (67NR and 4T1). These cell lines were derived from a single mammary tumor and have different growth and metabolic phenotypes.
EXPERIMENTAL DESIGN: LDH-A expression, Lactate concentration, glucose utilization, and oxygen consumption were measured in cells, and the potential relationship between tumor Lactate levels [measured by magnetic resonance spectroscopic imaging (MRSI)] and tumor glucose utilization [measured by [(18)F]2-deoxy-2-fluoro-D-glucose positron emission tomography ([(18)F]FDG-PET)] was assessed in orthotopic breast tumors derived from these cell lines.
RESULTS: We show a substantial difference in LDH-A expression between 67NR and 4T1 cells under normoxia and hypoxia. We also show that small orthotopic 4T1 tumors generate 10-fold more Lactate than corresponding 67NR tumors. The high Lactate levels in small primary 4T1 tumors are associated with intense pimonidazole staining (a hypoxia indicator). Less-intense hypoxia staining was observed in the larger 67NR tumors and is consistent with the gradual increase and plateau of Lactate concentration in enlarging 67NR tumors.
CONCLUSIONS: Lactate-MRSI has a greater dynamic range than [(18)F]FDG-PET and may be a more sensitive measure with which to evaluate the aggressive and metastatic potential of primary breast tumors.

References

  1. Mol Cancer Res. 2005 Jan;3(1):1-13 [PMID: 15671244]
  2. PLoS One. 2010 May 27;5(5):e10857 [PMID: 20523727]
  3. Cancer Res. 2007 Feb 15;67(4):1472-86 [PMID: 17308085]
  4. Neoplasia. 2003 Mar-Apr;5(2):135-45 [PMID: 12659686]
  5. Cell Cycle. 2010 Dec 15;9(24):4941-53 [PMID: 21150275]
  6. Neoplasia. 2011 Jan;13(1):60-71 [PMID: 21245941]
  7. Radiat Res. 2002 Aug;158(2):167-73 [PMID: 12105986]
  8. J Biol Chem. 1995 Sep 8;270(36):21021-7 [PMID: 7673128]
  9. Nat Genet. 2008 Feb;40(2):170-80 [PMID: 18176562]
  10. Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2037-42 [PMID: 20133848]
  11. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6658-63 [PMID: 9192621]
  12. Cancer Cell. 2006 Jun;9(6):425-34 [PMID: 16766262]
  13. Breast Cancer Res. 2000;2(5):331-4 [PMID: 11250725]
  14. J Magn Reson B. 1995 Mar;106(3):203-11 [PMID: 7719620]
  15. Adv Enzymol Relat Areas Mol Biol. 1973;37:61-133 [PMID: 4144036]
  16. J Cancer Res Clin Oncol. 2003 Jun;129(6):321-6 [PMID: 12827509]
  17. Nat Rev Cancer. 2004 Nov;4(11):891-9 [PMID: 15516961]
  18. Oncogene. 2009 Aug 6;28(31):2796-805 [PMID: 19483725]
  19. J Biol Chem. 1966 Apr 10;241(7):1462-7 [PMID: 4287748]
  20. Magn Reson Med. 2004 Oct;52(4):902-6 [PMID: 15389963]
  21. Semin Radiat Oncol. 2004 Jul;14(3):267-74 [PMID: 15254870]
  22. J Proteome Res. 2009 Feb;8(2):583-94 [PMID: 19086899]
  23. J Biol Chem. 2010 Mar 26;285(13):9317-9321 [PMID: 20139083]
  24. Mol Cell Biol. 2005 Jul;25(14):6225-34 [PMID: 15988031]
  25. Clin Exp Metastasis. 2005;22(1):25-30 [PMID: 16132575]
  26. Breast Cancer Res Treat. 2005 Jun;91(3):217-25 [PMID: 15952055]
  27. Mol Cell. 2010 Oct 22;40(2):323-32 [PMID: 20965425]
  28. Science. 2009 May 22;324(5930):1029-33 [PMID: 19460998]
  29. J Clin Invest. 2008 Dec;118(12):3930-42 [PMID: 19033663]
  30. NMR Biomed. 2012 Jan;25(1):113-122 [PMID: 21618306]
  31. Clin Cancer Res. 2007 Jun 15;13(12):3460-9 [PMID: 17575208]
  32. BMC Cancer. 2008 Aug 09;8:228 [PMID: 18691423]
  33. Mol Cancer Ther. 2009 Mar;8(3):626-35 [PMID: 19276158]
  34. Trends Biochem Sci. 2010 Aug;35(8):427-33 [PMID: 20570523]
  35. Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18782-7 [PMID: 19033189]
  36. Science. 2003 Dec 12;302(5652):1975-8 [PMID: 14671307]
  37. Int J Radiat Oncol Biol Phys. 2001 Oct 1;51(2):349-53 [PMID: 11567808]
  38. J Clin Oncol. 2006 Sep 10;24(26):4301-8 [PMID: 16896001]
  39. Nat Rev Cancer. 2008 Jan;8(1):56-61 [PMID: 18059462]
  40. NMR Biomed. 2005 Nov;18(7):430-9 [PMID: 16206237]
  41. Clin Cancer Res. 2011 Jul 15;17(14):4892-900 [PMID: 21632858]
  42. Cell. 2004 Jun 25;117(7):927-39 [PMID: 15210113]
  43. J Magn Reson B. 1995 Mar;106(3):287-91 [PMID: 7719627]
  44. Cancer Res. 2000 Feb 15;60(4):916-21 [PMID: 10706105]
  45. Science. 1956 Aug 10;124(3215):269-70 [PMID: 13351639]
  46. Cancer Cell. 2008 Jun;13(6):472-82 [PMID: 18538731]
  47. Mol Cancer. 2007 Dec 01;6:77 [PMID: 18053146]
  48. Biochem J. 1996 Feb 1;313 ( Pt 3):809-14 [PMID: 8611159]
  49. Clin Cancer Res. 2011 Mar 1;17(5):1099-110 [PMID: 21245090]
  50. Br J Cancer. 2003 Sep 1;89(5):877-85 [PMID: 12942121]
  51. Curr Med Chem. 2010;17(7):672-97 [PMID: 20088761]
  52. Cancer Res. 1992 Mar 15;52(6):1399-405 [PMID: 1540948]
  53. Nat Rev Genet. 2007 Aug;8(8):601-9 [PMID: 17607306]
  54. Cell. 2006 Nov 17;127(4):679-95 [PMID: 17110329]

Grants

  1. U24 CA083084/NCI NIH HHS
  2. P50 CA086438/NCI NIH HHS
  3. CA86438/NCI NIH HHS
  4. U24CA83084/NCI NIH HHS
  5. CA94060/NCI NIH HHS
  6. P01 CA094060/NCI NIH HHS
  7. R01 CA098505/NCI NIH HHS
  8. P01 CA115675/NCI NIH HHS
  9. CA098505/NCI NIH HHS
  10. CA115675/NCI NIH HHS
  11. P30 CA008748/NCI NIH HHS

MeSH Term

Animals
Cell Line, Tumor
Female
Glucose
Isoenzymes
L-Lactate Dehydrogenase
Lactate Dehydrogenase 5
Lactic Acid
Mammary Neoplasms, Animal
Mice
Mice, Nude
Neoplasm Transplantation
Phenotype
RNA, Messenger

Chemicals

Isoenzymes
RNA, Messenger
Lactic Acid
L-Lactate Dehydrogenase
Lactate Dehydrogenase 5
Glucose

Word Cloud

Created with Highcharts 10.0.0lactatetumors67NR4T1tumorLDH-Aexpressionbreastcelllines[18hypoxiametabolicderivedconcentrationglucoseutilizationcellspotentiallevels[measured]F]FDG-PETorthotopicshowsmallprimarystainingPURPOSE:comparedprofilesassociationproductiontwoisogenicmurinecancersinglemammarydifferentgrowthphenotypesEXPERIMENTALDESIGN:oxygenconsumptionmeasuredrelationshipmagneticresonancespectroscopicimagingMRSIF]2-deoxy-2-fluoro-D-glucosepositronemissiontomographyassessedRESULTS:substantialdifferencenormoxiaalsogenerate10-foldcorrespondinghighassociatedintensepimonidazoleindicatorLess-intenseobservedlargerconsistentgradualincreaseplateauenlargingCONCLUSIONS:Lactate-MRSIgreaterdynamicrangemaysensitivemeasureevaluateaggressivemetastaticMetabolicimaging:linkdehydrogenasephenotype

Similar Articles

Cited By (68)