Genetic targeting and physiological features of VGLUT3+ amacrine cells.

William N Grimes, Rebecca P Seal, Nicholas Oesch, Robert H Edwards, Jeffrey S Diamond
Author Information
  1. William N Grimes: Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-3701, USA.

Abstract

Amacrine cells constitute a diverse class of interneurons that contribute to visual signal processing in the inner retina, but surprisingly, little is known about the physiology of most amacrine cell subtypes. Here, we have taken advantage of the sparse expression of vesicular glutamate transporter 3 (VGLUT3) in the mammalian retina to target the expression of yellow fluorescent protein (YFP) to a unique population of amacrine cells using a new transgenic mouse line. Electrophysiological recordings made from YFP-positive (VGLUT3+) amacrine cells provide the first functional data regarding the active membrane properties and synaptic connections of this recently identified cell type. We found that VGLUT3+ amacrine cells receive direct synaptic input from bipolar cells via both N-methyl-d-aspartate receptors (NMDARs) and non-NMDARs. Voltage-gated sodium channels amplified these excitatory inputs but repetitive spiking was never observed. VGLUT3+ amacrine cells responded transiently to both light increments (ON response) and decrements (OFF response); ON responses consisted exclusively of inhibitory inputs, while OFF responses comprised both excitatory and inhibitory components, although the inhibitory conductance was larger in amplitude and longer in time course. The physiological properties and anatomical features of the VGLUT3+ amacrine cells suggest that this bistratified interneuron may play a role in disinhibitory signaling and/or crossover inhibition between parallel pathways in the retina.

References

  1. Brain Res. 2008 Jun 18;1215:20-9 [PMID: 18482716]
  2. J Neurophysiol. 2010 Jan;103(1):25-37 [PMID: 19906884]
  3. Neuropharmacology. 2005 Nov;49(6):901-11 [PMID: 16182324]
  4. J Neurophysiol. 2008 Oct;100(4):2077-88 [PMID: 18667544]
  5. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14488-93 [PMID: 12388773]
  6. J Neurosci. 2002 Jul 1;22(13):5442-51 [PMID: 12097496]
  7. J Comput Neurosci. 2009 Dec;27(3):569-90 [PMID: 19636690]
  8. Nat Neurosci. 2009 Oct;12(10):1308-16 [PMID: 19734895]
  9. J Neurosci. 2010 Feb 10;30(6):2330-9 [PMID: 20147559]
  10. J Comp Neurol. 2004 Jan 6;468(2):251-63 [PMID: 14648683]
  11. Vis Neurosci. 1997 May-Jun;14(3):553-63 [PMID: 9194322]
  12. J Comp Neurol. 1999 Oct 18;413(2):305-26 [PMID: 10524341]
  13. J Comp Neurol. 2004 Sep 27;477(4):386-98 [PMID: 15329888]
  14. Neuron. 2010 Mar 25;65(6):873-85 [PMID: 20346762]
  15. Nature. 2002 Aug 22;418(6900):845-52 [PMID: 12192402]
  16. J Physiol. 2005 Jun 1;565(Pt 2):517-35 [PMID: 15760938]
  17. Nature. 2006 Oct 12;443(7112):705-8 [PMID: 17036006]
  18. J Biol Chem. 2002 Dec 27;277(52):50734-48 [PMID: 12384506]
  19. Nat Neurosci. 2008 Mar;11(3):318-26 [PMID: 18223648]
  20. J Neurophysiol. 1999 Jun;81(6):2923-36 [PMID: 10368409]
  21. J Neurosci. 2002 Sep 1;22(17):7712-20 [PMID: 12196594]
  22. J Neurosci. 2008 Jul 30;28(31):7919-28 [PMID: 18667624]
  23. J Neurosci. 2003 Nov 26;23(34):10923-33 [PMID: 14645488]
  24. Nat Neurosci. 2009 May;12(5):585-92 [PMID: 19363492]
  25. J Neurosci. 2008 Apr 16;28(16):4136-50 [PMID: 18417693]
  26. J Physiol. 2000 Mar 15;523 Pt 3:771-83 [PMID: 10718754]
  27. J Neurosci. 1998 Mar 15;18(6):2301-8 [PMID: 9482814]
  28. J Neurophysiol. 1999 Jun;81(6):3092-5 [PMID: 10368424]
  29. Nat Neurosci. 2009 Sep;12(9):1197-204 [PMID: 19648912]
  30. Curr Opin Neurobiol. 2002 Aug;12(4):405-10 [PMID: 12139988]
  31. Nat Neurosci. 2001 Feb;4(2):176-83 [PMID: 11175879]
  32. J Neurosci. 2003 Jul 9;23(14):6063-73 [PMID: 12853425]
  33. J Neurosci. 1997 Aug 15;17(16):6075-85 [PMID: 9236219]
  34. Nat Biotechnol. 1997 Sep;15(9):859-65 [PMID: 9306400]
  35. Vis Neurosci. 2009 May-Jun;26(3):297-308 [PMID: 19602302]
  36. Vis Neurosci. 2011 Jan;28(1):95-108 [PMID: 20932357]
  37. Brain Res. 2006 Apr 12;1082(1):73-85 [PMID: 16516863]
  38. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4137-42 [PMID: 10097176]
  39. J Neurosci. 1999 Jul 1;19(13):5255-64 [PMID: 10377337]
  40. Neuron. 1998 May;20(5):971-82 [PMID: 9620701]
  41. PLoS One. 2010 Aug 27;5(8):e12447 [PMID: 20805982]

Grants

  1. F32 MH068085/NIMH NIH HHS
  2. P01 DA010154/NIDA NIH HHS
  3. R01 MH050712/NIMH NIH HHS

MeSH Term

Amacrine Cells
Amino Acid Transport Systems, Acidic
Animals
Animals, Newborn
Biophysics
Cadmium Chloride
Excitatory Amino Acid Antagonists
Excitatory Postsynaptic Potentials
Green Fluorescent Proteins
In Vitro Techniques
Light
Membrane Potentials
Mice
Mice, Transgenic
Peptides
Retina
Retinal Bipolar Cells
Sodium Channel Blockers
Synapses
Tetrodotoxin
Whole Blood Coagulation Time

Chemicals

Amino Acid Transport Systems, Acidic
Excitatory Amino Acid Antagonists
Peptides
Sodium Channel Blockers
vesicular glutamate transporter 3, mouse
Green Fluorescent Proteins
Tetrodotoxin
iberiotoxin
Cadmium Chloride

Word Cloud

Created with Highcharts 10.0.0cellsamacrineVGLUT3+retinainhibitorycellexpressionpropertiessynapticexcitatoryinputsONresponseOFFresponsesphysiologicalfeaturesAmacrineconstitutediverseclassinterneuronscontributevisualsignalprocessinginnersurprisinglylittleknownphysiologysubtypestakenadvantagesparsevesicularglutamatetransporter3VGLUT3mammaliantargetyellowfluorescentproteinYFPuniquepopulationusingnewtransgenicmouselineElectrophysiologicalrecordingsmadeYFP-positiveprovidefirstfunctionaldataregardingactivemembraneconnectionsrecentlyidentifiedtypefoundreceivedirectinputbipolarviaN-methyl-d-aspartatereceptorsNMDARsnon-NMDARsVoltage-gatedsodiumchannelsamplifiedrepetitivespikingneverobservedrespondedtransientlylightincrementsdecrementsconsistedexclusivelycomprisedcomponentsalthoughconductancelargeramplitudelongertimecourseanatomicalsuggestbistratifiedinterneuronmayplayroledisinhibitorysignalingand/orcrossoverinhibitionparallelpathwaysGenetictargeting

Similar Articles

Cited By