Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM).

Gema Vizcay-Barrena, Stephen E D Webb, Marisa L Martin-Fernandez, Zoe A Wilson
Author Information
  1. Gema Vizcay-Barrena: School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK.

Abstract

Total internal reflection fluorescence microscopy (TIRFM) has been proven to be an extremely powerful technique in animal cell research for generating high contrast images and dynamic protein conformation information. However, there has long been a perception that TIRFM is not feasible in plant cells because the cell wall would restrict the penetration of the evanescent field and lead to scattering of illumination. By comparative analysis of epifluorescence and TIRF in root cells, it is demonstrated that TIRFM can generate high contrast images, superior to other approaches, from intact plant cells. It is also shown that TIRF imaging is possible not only at the plasma membrane level, but also in organelles, for example the nucleus, due to the presence of the central vacuole. Importantly, it is demonstrated for the first time that this is TIRF excitation, and not TIRF-like excitation described as variable-angle epifluorescence microscopy (VAEM), and it is shown how to distinguish the two techniques in practical microscopy. These TIRF images show the highest signal-to-background ratio, and it is demonstrated that they can be used for single-molecule microscopy. Rare protein events, which would otherwise be masked by the average molecular behaviour, can therefore be detected, including the conformations and oligomerization states of interacting proteins and signalling networks in vivo. The demonstration of the application of TIRFM and single-molecule analysis to plant cells therefore opens up a new range of possibilities for plant cell imaging.

References

  1. Nat Methods. 2008 Feb;5(2):159-61 [PMID: 18176568]
  2. Trends Plant Sci. 2007 Nov;12(11):506-513 [PMID: 17933577]
  3. Plant Cell. 2009 Dec;21(12):3868-84 [PMID: 20023198]
  4. Plant Cell. 2010 Aug;22(8):2749-67 [PMID: 20807879]
  5. Plant Cell. 1998 Nov;10(11):1927-40 [PMID: 9811799]
  6. J Exp Bot. 2007;58(11):3005-15 [PMID: 17728296]
  7. Fungal Genet Biol. 2008 May;45(5):683-92 [PMID: 18069024]
  8. Plant Physiol. 2006 Aug;141(4):1591-603 [PMID: 16798949]
  9. Curr Opin Biotechnol. 2005 Feb;16(1):13-8 [PMID: 15722010]
  10. Plant Physiol. 2008 Aug;147(4):1590-602 [PMID: 18344418]
  11. Trends Cell Biol. 2001 Jul;11(7):298-303 [PMID: 11413041]
  12. Opt Express. 2008 Dec 8;16(25):20258-65 [PMID: 19065164]
  13. Plant Cell. 2005 Aug;17(8):2296-313 [PMID: 15994911]
  14. Cell Calcium. 2006 Nov-Dec;40(5-6):413-22 [PMID: 17067668]
  15. Opt Lett. 2006 Jul 15;31(14):2157-9 [PMID: 16794711]
  16. Appl Opt. 1974 Jan 1;13(1):109-11 [PMID: 20125929]
  17. Curr Biol. 2006 Oct 10;16(19):1924-30 [PMID: 17027489]
  18. Plant Cell. 2008 May;20(5):1363-80 [PMID: 18502847]
  19. Plant J. 2006 Feb;45(4):573-98 [PMID: 16441350]
  20. J Cell Biol. 2009 Jan 26;184(2):269-80 [PMID: 19171759]
  21. Biochim Biophys Acta. 2010 Feb;1803(2):201-6 [PMID: 18977251]
  22. Plant Physiol. 2007 Dec;145(4):1100-9 [PMID: 18056860]
  23. Plant J. 2008 Jan;53(1):186-96 [PMID: 17931350]
  24. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2122-7 [PMID: 9122158]
  25. Traffic. 2001 Nov;2(11):764-74 [PMID: 11733042]
  26. J Cell Sci. 2010 Sep 1;123(Pt 17):3019-28 [PMID: 20699356]
  27. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3718-23 [PMID: 10737809]
  28. Biophys J. 2008 Feb 1;94(3):803-19 [PMID: 17890389]
  29. Plant J. 2005 May;42(3):444-53 [PMID: 15842628]
  30. Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13341-6 [PMID: 19633191]
  31. Nat Methods. 2005 Dec;2(12):920-31 [PMID: 16299477]
  32. Curr Biol. 2009 Apr 14;19(7):537-45 [PMID: 19362000]
  33. J Exp Bot. 2008;59(14):3845-55 [PMID: 18832189]

Grants

  1. BB/G000204/1/Biotechnology and Biological Sciences Research Council
  2. BB/G006911/1/Biotechnology and Biological Sciences Research Council

MeSH Term

Luminescent Proteins
Microscopy, Fluorescence
Plant Proteins

Chemicals

Luminescent Proteins
Plant Proteins

Word Cloud

Created with Highcharts 10.0.0microscopyTIRFMplantcellsTIRFcellimagesdemonstratedcanimagingsingle-moleculeinternalreflectionfluorescencehighcontrastproteinanalysisepifluorescencealsoshownexcitationthereforeproteinsTotalprovenextremelypowerfultechniqueanimalresearchgeneratingdynamicconformationinformationHoweverlongperceptionfeasiblewallrestrictpenetrationevanescentfieldleadscatteringilluminationcomparativerootgeneratesuperiorapproachesintactpossibleplasmamembranelevelorganellesexamplenucleusduepresencecentralvacuoleImportantlyfirsttimeTIRF-likedescribedvariable-angleVAEMdistinguishtwotechniquespracticalshowhighestsignal-to-backgroundratiousedRareeventsotherwisemaskedaveragemolecularbehaviourdetectedincludingconformationsoligomerizationstatesinteractingsignallingnetworksvivodemonstrationapplicationopensnewrangepossibilitiesSubcellularfluorescentusingtotal

Similar Articles

Cited By