Expression of biomass-degrading enzymes is a major event during conidium development in Trichoderma reesei.

Benjamin Metz, Verena Seidl-Seiboth, Thomas Haarmann, Alexeij Kopchinskiy, Patrick Lorenz, Bernhard Seiboth, Christian P Kubicek
Author Information
  1. Benjamin Metz: Institute of Chemical Engineering, University of Technology of Vienna, Vienna, Austria.

Abstract

The conidium plays a critical role in the life cycle of many filamentous fungi, being the primary means for survival under unfavorable conditions. To investigate the transcriptional changes taking place during the transition from growing hyphae to conidia in Trichoderma reesei, microarray experiments were performed. A total of 900 distinct genes were classified as differentially expressed, relative to their expression at time zero of conidiation, at least at one of the time points analyzed. The main functional categories (FunCat) overrepresented among the upregulated genes were those involving solute transport, metabolism, transcriptional regulation, secondary metabolite synthesis, lipases, proteases, and, particularly, cellulases and hemicellulases. Categories overrepresented among the downregulated genes were especially those associated with ribosomal and mitochondrial functions. The upregulation of cellulase and hemicellulase genes was dependent on the function of the positive transcriptional regulator XYR1, but XYR1 exerted no influence on conidiation itself. At least 20% of the significantly regulated genes were nonrandomly distributed within the T. reesei genome, suggesting an epigenetic component in the regulation of conidiation. The significant upregulation of cellulases and hemicellulases during this process, and thus cellulase and hemicellulase content in the spores of T. reesei, contributes to the hypothesis that the ability to hydrolyze plant biomass is a major trait of this fungus enabling it to break dormancy and reinitiate vegetative growth after a period of facing unfavorable conditions.

References

  1. BMC Evol Biol. 2006 Dec 19;6:109 [PMID: 17178000]
  2. J Proteome Res. 2010 Jul 2;9(7):3427-42 [PMID: 20507060]
  3. Nucleic Acids Res. 2004 Oct 14;32(18):5539-45 [PMID: 15486203]
  4. Free Radic Biol Med. 2000 Nov 15;29(10):986-94 [PMID: 11084287]
  5. Chem Biodivers. 2010 Jun;7(6):1467-78 [PMID: 20564565]
  6. Biochemistry. 2006 Feb 14;45(6):1979-86 [PMID: 16460045]
  7. PLoS One. 2009 Apr 21;4(4):e5286 [PMID: 19461939]
  8. Biotechnol Biofuels. 2009 Sep 01;2:19 [PMID: 19723296]
  9. J Biol Chem. 2007 Sep 14;282(37):27259-27269 [PMID: 17631497]
  10. FEBS Lett. 2009 Apr 17;583(8):1309-13 [PMID: 19303876]
  11. Adv Microb Physiol. 2004;49:1-76 [PMID: 15518828]
  12. Trends Microbiol. 2005 Mar;13(3):111-8 [PMID: 15737729]
  13. Mol Microbiol. 2010 Feb;75(4):910-23 [PMID: 20487287]
  14. BMC Genomics. 2008 Sep 16;9:417 [PMID: 18796135]
  15. Nucleic Acids Res. 2002 May 1;30(9):e36 [PMID: 11972351]
  16. FEBS Lett. 2009 May 6;583(9):1489-92 [PMID: 19345220]
  17. Curr Opin Microbiol. 2010 Aug;13(4):431-6 [PMID: 20627806]
  18. Science. 2007 Sep 7;317(5843):1400-2 [PMID: 17823352]
  19. Nat Rev Genet. 2004 Apr;5(4):299-310 [PMID: 15131653]
  20. Nature. 2000 Oct 26;407(6807):1018-22 [PMID: 11069183]
  21. Eukaryot Cell. 2003 Aug;2(4):798-808 [PMID: 12912899]
  22. Nucleic Acids Res. 2003 Feb 15;31(4):e15 [PMID: 12582260]
  23. Bioessays. 1993 Jun;15(6):365-74 [PMID: 8357339]
  24. Genetics. 2010 Dec;186(4):1217-30 [PMID: 20876563]
  25. Arch Microbiol. 1991;155(6):601-6 [PMID: 1953300]
  26. PLoS Comput Biol. 2009 Jun;5(6):e1000421 [PMID: 19557160]
  27. Microbiology (Reading). 2010 Oct;156(Pt 10):2887-2900 [PMID: 20688823]
  28. Microbiol Mol Biol Rev. 2002 Sep;66(3):447-59, table of contents [PMID: 12208999]
  29. Chem Rec. 2006;6(5):259-66 [PMID: 17103387]
  30. Int J Dev Biol. 2009;53(2-3):425-32 [PMID: 19412896]
  31. Eukaryot Cell. 2010 Sep;9(9):1398-402 [PMID: 20305000]
  32. Eur J Cancer. 1997 Apr;33(5):735-49 [PMID: 9282112]
  33. Eur J Biochem. 2002 Sep;269(17):4202-11 [PMID: 12199698]
  34. Eukaryot Cell. 2006 Dec;5(12):2128-37 [PMID: 17056741]
  35. Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):27-32 [PMID: 12448702]
  36. Microbiol Mol Biol Rev. 1998 Mar;62(1):35-54 [PMID: 9529886]
  37. Biochemistry. 2006 Mar 28;45(12):3912-24 [PMID: 16548518]
  38. Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15761-6 [PMID: 18840678]
  39. Fungal Genet Biol. 2005 May;42(5):390-402 [PMID: 15809004]
  40. Glycobiology. 2006 Dec;16(12):158R-184R [PMID: 16973733]
  41. Nat Biotechnol. 2008 May;26(5):553-60 [PMID: 18454138]
  42. J Biol Chem. 2007 Apr 13;282(15):11078-83 [PMID: 17303556]
  43. Bioinformatics. 2003 Jan 22;19(2):185-93 [PMID: 12538238]
  44. Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3141-6 [PMID: 15710882]
  45. BMC Bioinformatics. 2006 Oct 16;7:453 [PMID: 17042935]
  46. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5976-80 [PMID: 6764535]
  47. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7755-60 [PMID: 8755548]
  48. Biochem J. 2006 Oct 15;399(2):257-64 [PMID: 16819943]

MeSH Term

Biomass
Cellulase
Fungal Proteins
Gene Expression Regulation, Fungal
Genome
Glycoside Hydrolases
Hyphae
Oligonucleotide Array Sequence Analysis
Reactive Oxygen Species
Spores, Fungal
Transcription, Genetic
Trichoderma

Chemicals

Fungal Proteins
Reactive Oxygen Species
Glycoside Hydrolases
hemicellulase
Cellulase

Word Cloud

Created with Highcharts 10.0.0genesreeseitranscriptionalconidiationconidiumunfavorableconditionsTrichodermatimeleastoverrepresentedamongregulationcellulaseshemicellulasesupregulationcellulasehemicellulaseXYR1Tmajorplayscriticalrolelifecyclemanyfilamentousfungiprimarymeanssurvivalinvestigatechangestakingplacetransitiongrowinghyphaeconidiamicroarrayexperimentsperformedtotal900distinctclassifieddifferentiallyexpressedrelativeexpressionzeroonepointsanalyzedmainfunctionalcategoriesFunCatupregulatedinvolvingsolutetransportmetabolismsecondarymetabolitesynthesislipasesproteasesparticularlyCategoriesdownregulatedespeciallyassociatedribosomalmitochondrialfunctionsdependentfunctionpositiveregulatorexertedinfluence20%significantlyregulatednonrandomlydistributedwithingenomesuggestingepigeneticcomponentsignificantprocessthuscontentsporescontributeshypothesisabilityhydrolyzeplantbiomasstraitfungusenablingbreakdormancyreinitiatevegetativegrowthperiodfacingExpressionbiomass-degradingenzymeseventdevelopment

Similar Articles

Cited By