DNA demethylation dynamics.

Nidhi Bhutani, David M Burns, Helen M Blau
Author Information
  1. Nidhi Bhutani: Baxter Laboratory for Stem Cell Biology, Institute for Stem Cell Biology and Regenerative Medicine, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5175, USA.

Abstract

The discovery of cytosine hydroxymethylation (5hmC) suggested a simple means of demethylating DNA and activating genes. Further experiments, however, unearthed an unexpectedly complex process, entailing both passive and active mechanisms of DNA demethylation by the ten-eleven translocation (TET) and AID/APOBEC families of enzymes. The consensus emerging from these studies is that removal of cytosine methylation in mammalian cells can occur by DNA repair. These reports highlight that in certain contexts, DNA methylation is not fixed but dynamic, requiring continuous regulation.

References

  1. Trends Genet. 2009 Feb;25(2):82-90 [PMID: 19144439]
  2. Cell. 2000 Sep 1;102(5):553-63 [PMID: 11007474]
  3. Nat Genet. 2003 Mar;33 Suppl:245-54 [PMID: 12610534]
  4. Neuron. 2007 Mar 15;53(6):857-69 [PMID: 17359920]
  5. Cell. 1996 Sep 6;86(5):709-18 [PMID: 8797818]
  6. Mol Cell. 2011 May 20;42(4):451-64 [PMID: 21514197]
  7. Science. 2009 May 15;324(5929):929-30 [PMID: 19372393]
  8. Nature. 2011 May 19;473(7347):394-7 [PMID: 21552279]
  9. Nat Rev Genet. 2010 Mar;11(3):204-20 [PMID: 20142834]
  10. Trends Immunol. 2009 Apr;30(4):173-81 [PMID: 19303358]
  11. Science. 2008 Mar 28;319(5871):1827-30 [PMID: 18339900]
  12. Genes Dev. 2011 Apr 1;25(7):679-84 [PMID: 21460036]
  13. Nature. 1952 Dec 20;170(4338):1072-3 [PMID: 13013321]
  14. Nature. 2010 Jun 10;465(7299):704-12 [PMID: 20535199]
  15. Nature. 2011 May 19;473(7347):389-93 [PMID: 21451524]
  16. Cell. 1990 Dec 21;63(6):1229-37 [PMID: 2261641]
  17. Nature. 2010 Feb 25;463(7284):1101-5 [PMID: 20098412]
  18. Science. 2011 Sep 2;333(6047):1303-7 [PMID: 21817016]
  19. Trends Cell Biol. 2010 Oct;20(10):609-17 [PMID: 20810283]
  20. Cell. 2011 Apr 29;145(3):423-34 [PMID: 21496894]
  21. Nature. 2000 Feb 3;403(6769):501-2 [PMID: 10676950]
  22. Nature. 2010 Feb 25;463(7284):1042-7 [PMID: 20027182]
  23. Genes Dev. 2011 May 15;25(10):1010-22 [PMID: 21576262]
  24. Development. 1991 May;112(1):189-92 [PMID: 1769327]
  25. Curr Biol. 2000 Apr 20;10(8):475-8 [PMID: 10801417]
  26. Adv Immunol. 2007;94:157-214 [PMID: 17560275]
  27. Nature. 2010 Aug 26;466(7310):1129-33 [PMID: 20639862]
  28. Nature. 2008 Mar 6;452(7183):112-5 [PMID: 18322535]
  29. J Mol Biol. 1961 Jun;3:318-56 [PMID: 13718526]
  30. Nat Immunol. 2009 Nov;10(11):1147-53 [PMID: 19841648]
  31. Science. 2003 Oct 31;302(5646):890-3 [PMID: 14593184]
  32. Nat Rev Mol Cell Biol. 2011 Jun 23;12(7):453-9 [PMID: 21697902]
  33. Cell Res. 2011 Sep;21(9):1332-42 [PMID: 21747414]
  34. Cell. 1983 Apr;32(4):1171-80 [PMID: 6839359]
  35. Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3642-7 [PMID: 21321204]
  36. Science. 2009 May 15;324(5929):930-5 [PMID: 19372391]
  37. Cell. 2011 Jul 8;146(1):67-79 [PMID: 21722948]
  38. Nat Commun. 2011;2:241 [PMID: 21407207]
  39. Nat Cell Biol. 2007 Jan;9(1):64-71 [PMID: 17143267]
  40. Nature. 2008 Mar 6;452(7183):45-50 [PMID: 18322525]
  41. Genes Dev. 1998 Jul 15;12(14):2108-13 [PMID: 9679055]
  42. Nat Biotechnol. 2011 Jan;29(1):68-72 [PMID: 21151123]
  43. Curr Biol. 2009 Mar 24;19(6):R234-41 [PMID: 19321137]
  44. Adv Immunol. 2007;94:37-73 [PMID: 17560271]
  45. Adv Immunol. 2010;105:159-91 [PMID: 20510733]
  46. Philos Trans R Soc Lond B Biol Sci. 1990 Jan 30;326(1235):241-51 [PMID: 1968661]
  47. Nat Immunol. 2003 Mar;4(3):235-40 [PMID: 12548284]
  48. Science. 2010 Jul 2;329(5987):78-82 [PMID: 20595612]
  49. Cell Stem Cell. 2011 Feb 4;8(2):200-13 [PMID: 21295276]
  50. Nature. 2008 Feb 14;451(7180):841-5 [PMID: 18273020]
  51. PLoS One. 2010 Dec 23;5(12):e15367 [PMID: 21203455]
  52. Science. 2011 Sep 2;333(6047):1300-3 [PMID: 21778364]
  53. Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4395-400 [PMID: 17360535]
  54. Nature. 2011 May 19;473(7347):398-402 [PMID: 21460836]
  55. Nature. 2011 May 19;473(7347):343-8 [PMID: 21490601]
  56. PLoS One. 2010 Jan 26;5(1):e8888 [PMID: 20126651]
  57. Genes Dev. 2002 Jan 1;16(1):6-21 [PMID: 11782440]
  58. J Cell Biol. 1991 Mar;112(5):781-3 [PMID: 1999456]
  59. Annu Rev Biochem. 2005;74:481-514 [PMID: 15952895]
  60. Cell. 2008 Dec 26;135(7):1201-12 [PMID: 19109892]
  61. Cancer Res. 2002 Jul 15;62(14):4075-80 [PMID: 12124344]

Grants

  1. AG020961/NIA NIH HHS
  2. R01 AG009521-25/NIA NIH HHS
  3. U01 HL100397-04/NHLBI NIH HHS
  4. R01 AG020961/NIA NIH HHS
  5. R01 AG009521/NIA NIH HHS
  6. R01 HL096113/NHLBI NIH HHS
  7. HL100397/NHLBI NIH HHS
  8. HL096113/NHLBI NIH HHS
  9. R01 AG020961-09/NIA NIH HHS
  10. R37 AG009521/NIA NIH HHS
  11. T32 CA009151-27/NCI NIH HHS
  12. U01 HL100397/NHLBI NIH HHS
  13. AG009521/NIA NIH HHS
  14. T32 CA009151/NCI NIH HHS
  15. R01 HL096113-04/NHLBI NIH HHS
  16. 5T32CA09151/NCI NIH HHS

MeSH Term

Animals
Cytidine Deaminase
Cytosine
DNA Methylation
DNA Repair
Embryonic Development
Humans

Chemicals

Cytosine
Cytidine Deaminase

Word Cloud

Created with Highcharts 10.0.0DNAcytosinedemethylationmethylationdiscoveryhydroxymethylation5hmCsuggestedsimplemeansdemethylatingactivatinggenesexperimentshoweverunearthedunexpectedlycomplexprocessentailingpassiveactivemechanismsten-eleventranslocationTETAID/APOBECfamiliesenzymesconsensusemergingstudiesremovalmammaliancellscanoccurrepairreportshighlightcertaincontextsfixeddynamicrequiringcontinuousregulationdynamics

Similar Articles

Cited By