Default mode network connectivity predicts sustained attention deficits after traumatic brain injury.

Valerie Bonnelle, Robert Leech, Kirsi M Kinnunen, Tim E Ham, Cristian F Beckmann, Xavier De Boissezon, Richard J Greenwood, David J Sharp
Author Information
  1. Valerie Bonnelle: The Computational, Cognitive and Clinical Neuroimaging Laboratory, Centre for Neuroscience, Division of Experimental Medicine and The Medical Research Council Clinical Sciences Centre, Imperial College London, London W120NN, United Kingdom.

Abstract

traumatic brain injury (TBI) frequently produces impairments of attention in humans. These can result in a failure to maintain consistent goal-directed behavior. A predominantly right-lateralized frontoparietal network is often engaged during attentionally demanding tasks. However, lapses of attention have also been associated with increases in activation within the default mode network (DMN). Here, we study TBI patients with sustained attention impairment, defined on the basis of the consistency of their behavioral performance over time. We show that sustained attention impairments in patients are associated with an increase in DMN activation, particularly within the precuneus and posterior cingulate cortex. Furthermore, the interaction of the precuneus with the rest of the DMN at the start of the task, i.e., its functional connectivity, predicts which patients go on to show impairments of attention. Importantly, this predictive information is present before any behavioral evidence of sustained attention impairment, and the relationship is also found in a subgroup of patients without focal brain damage. TBI often results in diffuse axonal injury, which produces cognitive impairment by disconnecting nodes in distributed brain networks. Using diffusion tensor imaging, we demonstrate that structural disconnection within the DMN also correlates with the level of sustained attention. These results show that abnormalities in DMN function are a sensitive marker of impairments of attention and suggest that changes in connectivity within the DMN are central to the development of attentional impairment after TBI.

References

  1. Neurosci Lett. 2010 Jun 21;477(2):72-6 [PMID: 20416360]
  2. Trends Cogn Sci. 2010 Apr;14(4):180-90 [PMID: 20206576]
  3. Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):4259-64 [PMID: 11259662]
  4. Neuroimage. 2000 Jun;11(6 Pt 1):805-21 [PMID: 10860804]
  5. J Clin Exp Neuropsychol. 2001 Feb;23(1):74-93 [PMID: 11320446]
  6. Neuropsychologia. 1996 Oct;34(10):953-63 [PMID: 8843061]
  7. J Neurotrauma. 2006 Oct;23(10):1396-411 [PMID: 17020478]
  8. PLoS Biol. 2008 Jul 1;6(7):e159 [PMID: 18597554]
  9. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82 [PMID: 11209064]
  10. Neuropsychologia. 1999 Jun;37(6):661-70 [PMID: 10390027]
  11. Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13 [PMID: 16087444]
  12. Neuroimage. 2007 Jan 15;34(2):500-8 [PMID: 17113790]
  13. Brain. 2011 Feb;134(Pt 2):449-63 [PMID: 21193486]
  14. Cereb Cortex. 2008 Aug;18(8):1856-64 [PMID: 18063564]
  15. Science. 2007 Jan 19;315(5810):393-5 [PMID: 17234951]
  16. AJR Am J Roentgenol. 1988 Mar;150(3):663-72 [PMID: 3257624]
  17. Cereb Cortex. 2009 Jan;19(1):72-8 [PMID: 18403396]
  18. Nat Neurosci. 2006 Jul;9(7):971-8 [PMID: 16767087]
  19. J Neurosci. 2007 Feb 28;27(9):2349-56 [PMID: 17329432]
  20. Physiol Behav. 2008 Jan 28;93(1-2):369-78 [PMID: 17999934]
  21. IEEE Trans Med Imaging. 2001 Jan;20(1):45-57 [PMID: 11293691]
  22. IEEE Trans Med Imaging. 2004 Feb;23(2):137-52 [PMID: 14964560]
  23. Med Image Anal. 2001 Jun;5(2):143-56 [PMID: 11516708]
  24. J Neurosci. 2011 Mar 2;31(9):3217-24 [PMID: 21368033]
  25. Hum Brain Mapp. 2002 Nov;17(3):143-55 [PMID: 12391568]
  26. Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5948-53 [PMID: 19293382]
  27. Brain. 2009 Mar;132(Pt 3):684-94 [PMID: 19153150]
  28. Neuroimage. 2001 Jul;14(1 Pt 1):21-36 [PMID: 11525331]
  29. Curr Opin Neurol. 2008 Aug;21(4):424-30 [PMID: 18607202]
  30. Science. 2007 Jul 6;317(5834):43; author reply 43 [PMID: 17615325]
  31. J Head Trauma Rehabil. 2001 Aug;16(4):343-55 [PMID: 11461657]
  32. Neuroimage. 2008 May 15;41(1):100-12 [PMID: 18375149]
  33. Neuroimage. 2004;23 Suppl 1:S208-19 [PMID: 15501092]
  34. Hum Brain Mapp. 2009 Sep;30(9):2789-803 [PMID: 19117278]
  35. Brain. 2009 Mar;132(Pt 3):645-60 [PMID: 19158107]
  36. Neuroimage. 2008 Jan 1;39(1):527-37 [PMID: 17919929]
  37. J Cogn Neurosci. 1997 May;9(3):392-408 [PMID: 23965014]
  38. Psychopharmacology (Berl). 2002 Oct;164(1):33-41 [PMID: 12373417]
  39. J Head Trauma Rehabil. 2005 Jan-Feb;20(1):76-94 [PMID: 15668572]
  40. Neuroimage. 2003 Oct;20(2):1052-63 [PMID: 14568475]
  41. Ann Neurol. 2009 Oct;66(4):A7-8 [PMID: 19847905]
  42. Neurorehabil Neural Repair. 2009 Jun;23(5):468-77 [PMID: 19118131]
  43. Hum Factors. 2003 Fall;45(3):349-59 [PMID: 14702988]
  44. J Neurotrauma. 2007 Sep;24(9):1417-24 [PMID: 17892404]
  45. Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7209-14 [PMID: 19357304]
  46. Neuropsychologia. 1998 Dec;36(12):1325-34 [PMID: 9863686]
  47. Psychol Res. 2010 Sep;74(5):499-512 [PMID: 20146071]
  48. Ann N Y Acad Sci. 2008 Mar;1124:1-38 [PMID: 18400922]
  49. Neuropsychologia. 2004;42(9):1260-8 [PMID: 15178177]
  50. J Neurosci. 2006 Dec 20;26(51):13338-43 [PMID: 17182784]
  51. Neuroimage. 2010 Jan 15;49(2):1911-8 [PMID: 19761851]
  52. PLoS One. 2009 Sep 25;4(9):e7198 [PMID: 19779619]
  53. Neuropsychologia. 1997 Jun;35(6):747-58 [PMID: 9204482]
  54. J Magn Reson Imaging. 2006 Jun;23(6):816-26 [PMID: 16649208]
  55. Brain Res Brain Res Rev. 2001 Apr;35(2):146-60 [PMID: 11336780]
  56. Acta Psychol (Amst). 1974 Dec;38(6):455-60 [PMID: 4447049]
  57. J Neurotrauma. 2008 Sep;25(9):1057-70 [PMID: 18729718]
  58. AJNR Am J Neuroradiol. 2003 Jun-Jul;24(6):1049-56 [PMID: 12812926]
  59. Neuroimage. 2010 Feb 1;49(3):2163-77 [PMID: 19896537]
  60. Neuropsychologia. 1995 Jul;33(7):797-813 [PMID: 7477808]
  61. Neuroimage. 1999 Mar;9(3):269-77 [PMID: 10075897]
  62. Neurorehabil Neural Repair. 2007 Jan-Feb;21(1):36-45 [PMID: 17172552]
  63. J Neurol Neurosurg Psychiatry. 1989 Jun;52(6):742-8 [PMID: 2746267]
  64. Neuroimage. 2008 Jan 1;39(1):336-47 [PMID: 17931890]
  65. J Neurosci. 2008 Oct 22;28(43):10844-51 [PMID: 18945892]

Grants

  1. G0701951/Medical Research Council
  2. MC_U120097117/Medical Research Council

MeSH Term

Adolescent
Adult
Anisotropy
Attention Deficit Disorder with Hyperactivity
Brain Injuries
Brain Mapping
Case-Control Studies
Choice Behavior
Diffusion Tensor Imaging
Female
Gyrus Cinguli
Humans
Magnetic Resonance Imaging
Male
Middle Aged
Nerve Fibers, Myelinated
Neural Pathways
Neuropsychological Tests
Parietal Lobe
Psychomotor Performance
Reaction Time

Word Cloud

Created with Highcharts 10.0.0attentionDMNsustainedbrainTBIimpairmentswithinpatientsimpairmentinjurynetworkalsoshowconnectivityproducesoftenassociatedactivationmodebehavioralprecuneuspredictsresultsTraumaticfrequentlyhumanscanresultfailuremaintainconsistentgoal-directedbehaviorpredominantlyright-lateralizedfrontoparietalengagedattentionallydemandingtasksHoweverlapsesincreasesdefaultstudydefinedbasisconsistencyperformancetimeincreaseparticularlyposteriorcingulatecortexFurthermoreinteractionreststarttaskiefunctionalgoImportantlypredictiveinformationpresentevidencerelationshipfoundsubgroupwithoutfocaldamagediffuseaxonalcognitivedisconnectingnodesdistributednetworksUsingdiffusiontensorimagingdemonstratestructuraldisconnectioncorrelateslevelabnormalitiesfunctionsensitivemarkersuggestchangescentraldevelopmentattentionalDefaultdeficitstraumatic

Similar Articles

Cited By