Regulation of AMPA receptor function by the human memory-associated gene KIBRA.

Lauren Makuch, Lenora Volk, Victor Anggono, Richard C Johnson, Yilin Yu, Kerstin Duning, Joachim Kremerskothen, Jun Xia, Kogo Takamiya, Richard L Huganir
Author Information
  1. Lauren Makuch: Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

Abstract

KIBRA has recently been identified as a gene associated with human memory performance. Despite the elucidation of the role of KIBRA in several diverse processes in nonneuronal cells, the molecular function of KIBRA in neurons is unknown. We found that KIBRA directly binds to the protein interacting with C-kinase 1 (PICK1) and forms a complex with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs), the major excitatory neurotransmitter receptors in the brain. KIBRA knockdown accelerates the rate of AMPAR recycling following N-methyl-D-aspartate receptor-induced internalization. Genetic deletion of KIBRA in mice impairs both long-term depression and long-term potentiation at hippocampal Schaffer collateral-CA1 synapses. Moreover, KIBRA knockout mice have severe deficits in contextual fear learning and memory. These results indicate that KIBRA regulates higher brain function by regulating AMPAR trafficking and synaptic plasticity.

References

  1. Nat Cell Biol. 2007 Dec;9(12):1370-80 [PMID: 17994011]
  2. J Cell Mol Med. 2008 Sep-Oct;12(5A):1672-6 [PMID: 18194457]
  3. Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21784-9 [PMID: 21106762]
  4. Science. 2006 Oct 20;314(5798):475-8 [PMID: 17053149]
  5. J Neurosci. 2007 Dec 12;27(50):13903-8 [PMID: 18077702]
  6. Trends Neurosci. 2004 May;27(5):257-61 [PMID: 15111007]
  7. Neuron. 1998 Aug;21(2):393-400 [PMID: 9728920]
  8. Biochem Biophys Res Commun. 2003 Jan 24;300(4):862-7 [PMID: 12559952]
  9. J Neurosci. 2008 May 28;28(22):5752-5 [PMID: 18509036]
  10. Neurobiol Aging. 2008 Jul;29(7):1123-5 [PMID: 17353070]
  11. Nat Neurosci. 2002 Apr;5(4):316-24 [PMID: 11914720]
  12. Neuron. 2006 Mar 16;49(6):845-60 [PMID: 16543133]
  13. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8342-6 [PMID: 8378304]
  14. J Neurosci. 2010 May 5;30(18):6360-6 [PMID: 20445062]
  15. Neuron. 2008 Dec 26;60(6):1095-111 [PMID: 19109914]
  16. Neuron. 1999 Jan;22(1):179-87 [PMID: 10027300]
  17. Annu Rev Cell Dev Biol. 2007;23:613-43 [PMID: 17506699]
  18. J Neurosci. 2010 Dec 8;30(49):16437-52 [PMID: 21147983]
  19. Annu Rev Neurosci. 2002;25:103-26 [PMID: 12052905]
  20. Front Aging Neurosci. 2010 Feb 12;2:4 [PMID: 20552044]
  21. J Am Soc Nephrol. 2008 Oct;19(10):1891-903 [PMID: 18596123]
  22. Neuron. 2008 Mar 27;57(6):872-82 [PMID: 18367088]
  23. J Biol Chem. 1998 Jun 26;273(26):15879-82 [PMID: 9632630]
  24. Learn Mem. 2007 Sep 05;14(9):597-605 [PMID: 17823243]
  25. Dev Cell. 2010 Feb 16;18(2):309-16 [PMID: 20159600]
  26. J Neurosci. 2009 Jun 24;29(25):8087-93 [PMID: 19553448]
  27. Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):19038-43 [PMID: 20956289]
  28. Dev Cell. 2010 Feb 16;18(2):288-99 [PMID: 20159598]
  29. Neuroscience. 2008 Sep 9;155(4):1165-73 [PMID: 18672031]
  30. Neurobiol Aging. 2010 Jun;31(6):901-9 [PMID: 18789830]
  31. Nat Neurosci. 2005 Jun;8(6):768-75 [PMID: 15895086]
  32. Dev Cell. 2010 Feb 16;18(2):300-8 [PMID: 20159599]
  33. Hippocampus. 1998;8(6):638-46 [PMID: 9882021]
  34. Nature. 1997 Mar 20;386(6622):279-84 [PMID: 9069286]
  35. PLoS Biol. 2009 Nov;7(11):e1000235 [PMID: 19885391]
  36. J Biol Chem. 2006 Jul 14;281(28):19092-9 [PMID: 16684779]
  37. Neuron. 2005 Mar 24;45(6):903-15 [PMID: 15797551]
  38. Neurosci Lett. 2009 Jul 24;458(3):140-3 [PMID: 19397951]
  39. Biochem Biophys Res Commun. 2004 May 7;317(3):703-7 [PMID: 15081397]
  40. Neuron. 2006 Dec 7;52(5):831-43 [PMID: 17145504]

Grants

  1. R01 MH064856/NIMH NIH HHS
  2. MH64856/NIMH NIH HHS
  3. T32 MH015330/NIMH NIH HHS
  4. R01 NS036715/NINDS NIH HHS
  5. T32 EY017203/NEI NIH HHS
  6. T32MH15330/NIMH NIH HHS
  7. R01 NS036715-14/NINDS NIH HHS
  8. R37 NS036715/NINDS NIH HHS
  9. R01 MH064856-10/NIMH NIH HHS
  10. NS36715/NINDS NIH HHS
  11. /Howard Hughes Medical Institute

MeSH Term

Animals
Behavior, Animal
Carrier Proteins
Cells, Cultured
Conditioning, Classical
Electrophysiology
Fear
Humans
Intracellular Signaling Peptides and Proteins
Learning
Male
Memory
Mice
Mice, Inbred C57BL
Mice, Knockout
Neuronal Plasticity
Neurons
Nuclear Proteins
Phosphoproteins
Receptors, AMPA

Chemicals

Carrier Proteins
Intracellular Signaling Peptides and Proteins
Nuclear Proteins
PICk1 protein, human
Phosphoproteins
Receptors, AMPA
WWC1 protein, human

Word Cloud

Created with Highcharts 10.0.0KIBRAfunctiongenehumanmemoryreceptorsbrainAMPARmicelong-termrecentlyidentifiedassociatedperformanceDespiteelucidationroleseveraldiverseprocessesnonneuronalcellsmolecularneuronsunknownfounddirectlybindsproteininteractingC-kinase1PICK1formscomplexwith α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionateAMPARsmajorexcitatoryneurotransmitterknockdownacceleratesraterecyclingfollowingN-methyl-D-aspartatereceptor-inducedinternalizationGeneticdeletionimpairsdepressionpotentiationhippocampalSchaffercollateral-CA1synapsesMoreoverknockoutseveredeficitscontextualfearlearningresultsindicateregulateshigherregulatingtraffickingsynapticplasticityRegulationAMPAreceptormemory-associated

Similar Articles

Cited By