CD105 protein depletion enhances human adipose-derived stromal cell osteogenesis through reduction of transforming growth factor β1 (TGF-β1) signaling.

Benjamin Levi, Derrick C Wan, Jason P Glotzbach, Jeong Hyun, Michael Januszyk, Daniel Montoro, Michael Sorkin, Aaron W James, Emily R Nelson, Shuli Li, Natalina Quarto, Min Lee, Geoffrey C Gurtner, Michael T Longaker
Author Information
  1. Benjamin Levi: Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery Division, Stanford University School of Medicine, Stanford, California 94305, USA.

Abstract

Clinically available sources of bone for repair and reconstruction are limited by the accessibility of autologous grafts, infectious risks of cadaveric materials, and durability of synthetic substitutes. Cell-based approaches for skeletal regeneration can potentially fill this need, and adipose tissue represents a promising source for development of such therapies. Here, we enriched for an osteogenic subpopulation of cells derived from human subcutaneous adipose tissue utilizing microfluidic-based single cell transcriptional analysis and fluorescence-activated cell sorting (FACS). Statistical analysis of single cell transcriptional profiles demonstrated that low expression of endoglin (CD105) correlated with a subgroup of adipose-derived cells with increased osteogenic gene expression. FACS-sorted CD105(low) cells demonstrated significantly enhanced in vitro osteogenic differentiation and in vivo bone regeneration when compared with either CD105(high) or unsorted cells. Evaluation of the endoglin pathway suggested that enhanced osteogenesis among CD105(low) adipose-derived cells is likely due to identification of a subpopulation with lower TGF-β1/Smad2 signaling. These findings thus highlight a potential avenue to promote osteogenesis in adipose-derived mesenchymal cells for skeletal regeneration.

References

  1. Cells Tissues Organs. 2004;178(1):2-12 [PMID: 15550755]
  2. Plast Reconstr Surg. 2010 Sep;126(3):822-834 [PMID: 20811215]
  3. J Cell Physiol. 2008 Feb;214(2):413-21 [PMID: 17654479]
  4. Stem Cells. 2006 Feb;24(2):376-85 [PMID: 16322640]
  5. Plast Reconstr Surg. 2010 Aug;126(2):412-425 [PMID: 20679827]
  6. Stem Cells. 2006 May;24(5):1246-53 [PMID: 16410391]
  7. Mol Biol Cell. 2002 Dec;13(12):4279-95 [PMID: 12475952]
  8. J Pathol. 1996 Apr;178(4):363-6 [PMID: 8691311]
  9. J Craniofac Surg. 2008 Jan;19(1):192-7 [PMID: 18216688]
  10. Stem Cells. 2006 Jul;24(7):1728-37 [PMID: 16601078]
  11. Stem Cells. 2011 Aug;29(8):1241-55 [PMID: 21656608]
  12. PLoS One. 2009 Sep 22;4(9):e7120 [PMID: 19771170]
  13. EMBO J. 2002 Jul 15;21(14):3749-59 [PMID: 12110587]
  14. Tissue Eng. 2005 Jan-Feb;11(1-2):120-9 [PMID: 15738667]
  15. Am J Physiol Cell Physiol. 2007 Dec;293(6):C1834-42 [PMID: 17913846]
  16. Nature. 2009 Jan 22;457(7228):490-4 [PMID: 19078959]
  17. Stem Cells. 2007 Aug;25(8):2066-73 [PMID: 17464087]
  18. Endocrine. 2004 Mar-Apr;23(2-3):183-8 [PMID: 15146099]
  19. J Cell Sci. 2003 Jul 1;116(Pt 13):2677-85 [PMID: 12746487]
  20. Anticancer Res. 2011 Jun;31(6):2283-90 [PMID: 21737653]
  21. PLoS One. 2011;6(6):e21211 [PMID: 21731674]
  22. Health Phys. 1968 Apr;14(4):376 [PMID: 5643370]
  23. Histol Histopathol. 2010 Jun;25(6):807-15 [PMID: 20376787]
  24. Cytotherapy. 2004;6(1):7-14 [PMID: 14985162]
  25. J Cell Physiol. 2006 Jul;208(1):64-76 [PMID: 16557516]
  26. J Cell Commun Signal. 2011 Aug;5(3):173-7 [PMID: 21769684]
  27. Percept Mot Skills. 1999 Jun;88(3 Pt 1):759-64 [PMID: 10407882]
  28. Biomaterials. 2010 May;31(13):3564-71 [PMID: 20153525]
  29. PLoS One. 2010 Jun 17;5(6):e11177 [PMID: 20567510]
  30. J Biol Chem. 2000 Oct 6;275(40):30765-73 [PMID: 10843986]
  31. Acta Medica (Hradec Kralove). 2011;54(2):59-62 [PMID: 21842718]
  32. Tissue Eng Part A. 2009 Dec;15(12):3697-707 [PMID: 19505250]
  33. J Biol Chem. 2011 Aug 26;286(34):30034-46 [PMID: 21737454]
  34. Cytometry A. 2010 Jan;77(1):22-30 [PMID: 19852056]
  35. Endocr Rev. 2005 Oct;26(6):743-74 [PMID: 15901668]
  36. Stem Cell Rev Rep. 2011 Mar;7(1):64-76 [PMID: 20396979]
  37. Cytotherapy. 2006;8(4):315-7 [PMID: 16923606]
  38. Blood. 2011 Jul 7;118(1):88-97 [PMID: 21602526]
  39. J Cell Biochem. 2007 Dec 15;102(6):1375-88 [PMID: 17975795]
  40. Cytotherapy. 2010 Jul;12(4):538-46 [PMID: 20380539]
  41. Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12335-40 [PMID: 16894153]
  42. Biomaterials. 2007 Apr;28(10):1862-70 [PMID: 17184836]
  43. Genet Epidemiol. 2003 Jul;25(1):36-47 [PMID: 12813725]
  44. Cytokine Growth Factor Rev. 2000 Mar-Jun;11(1-2):23-35 [PMID: 10708950]
  45. J Biol Chem. 1992 Sep 25;267(27):19027-30 [PMID: 1326540]
  46. Int J Approx Reason. 2008 Jan;47(1):17-36 [PMID: 19079753]
  47. J Tissue Eng Regen Med. 2011 Aug;5(8):655-64 [PMID: 21268288]
  48. EMBO J. 2004 Feb 11;23(3):552-63 [PMID: 14749725]
  49. J Craniomaxillofac Surg. 2004 Dec;32(6):370-3 [PMID: 15555520]
  50. Nat Biotechnol. 2004 May;22(5):560-7 [PMID: 15077117]
  51. Stem Cells. 2005 Mar;23(3):412-23 [PMID: 15749936]
  52. J Biol Chem. 2002 Aug 9;277(32):29197-209 [PMID: 12015308]
  53. J Cell Physiol. 2001 Oct;189(1):54-63 [PMID: 11573204]

Grants

  1. R21 DE019274/NIDCR NIH HHS
  2. 2 RO1 DK074095-07/NIDDK NIH HHS
  3. R01 DK074095/NIDDK NIH HHS
  4. 1 R21 DE019274-01/NIDCR NIH HHS
  5. 1F32AR057302-02/NIAMS NIH HHS
  6. RC2 DE020771/NIDCR NIH HHS
  7. F32DK088448-01/NIDDK NIH HHS
  8. 1 RC2 DE020771-01/NIDCR NIH HHS

MeSH Term

Adipose Tissue
Adolescent
Adult
Aged
Antigens, CD
Bone Regeneration
Cell Differentiation
Cells, Cultured
Endoglin
Female
Gene Expression Regulation
Humans
Male
Microfluidic Analytical Techniques
Middle Aged
Osteogenesis
Receptors, Cell Surface
Signal Transduction
Smad2 Protein
Stromal Cells
Transcription, Genetic
Transforming Growth Factor beta1

Chemicals

Antigens, CD
ENG protein, human
Endoglin
Receptors, Cell Surface
SMAD2 protein, human
Smad2 Protein
Transforming Growth Factor beta1

Word Cloud

Created with Highcharts 10.0.0cellsCD105celladipose-derivedregenerationosteogeniclowosteogenesisboneskeletaladiposetissuesubpopulationhumansingletranscriptionalanalysisdemonstratedexpressionendoglinenhancedsignalingClinicallyavailablesourcesrepairreconstructionlimitedaccessibilityautologousgraftsinfectiousriskscadavericmaterialsdurabilitysyntheticsubstitutesCell-basedapproachescanpotentiallyfillneedrepresentspromisingsourcedevelopmenttherapiesenrichedderivedsubcutaneousutilizingmicrofluidic-basedfluorescence-activatedsortingFACSStatisticalprofilescorrelatedsubgroupincreasedgeneFACS-sortedsignificantlyvitrodifferentiationvivocomparedeitherhighunsortedEvaluationpathwaysuggestedamonglikelydueidentificationlowerTGF-β1/Smad2findingsthushighlightpotentialavenuepromotemesenchymalproteindepletionenhancesstromalreductiontransforminggrowthfactorβ1TGF-β1

Similar Articles

Cited By