Brain development and predation: plastic responses depend on evolutionary history.

Abigél Gonda, Kaisa Välimäki, Gábor Herczeg, Juha Merilä
Author Information
  1. Abigél Gonda: Department of Biosciences, University of Helsinki, Helsinki, Finland. abigel.gonda@helsinki.fi

Abstract

Although the brain is known to be a very plastic organ, the effects of common ecological interactions like predation or competition on brain development have remained largely unexplored. We reared nine-spined sticklebacks (Pungitius pungitius) from two coastal marine (predation-adapted) and two isolated pond (competition-adapted) populations in a factorial experiment, manipulating perceived predatory risk and food supply to see (i) if the treatments affected brain development and (ii) if there was population differentiation in the response to treatments. We detected differences in plasticity of the bulbus olfactorius (chemosensory centre) between habitats: marine fish were not plastic, whereas pond fish had larger bulbi olfactorii in the presence of perceived predation. Marine fish had larger bulbus olfactorius overall. Irrespective of population origin, the hypothalamus was smaller in the presence of perceived predatory risk. Our results demonstrate that perceived predation risk can influence brain development, and that the effect of an environmental factor on brain development may depend on the evolutionary history of a given population in respect to this environmental factor.

References

  1. Brain Behav Evol. 2007;70(4):239-46 [PMID: 17914255]
  2. J Evol Biol. 2011 Jun;24(6):1380-5 [PMID: 21554471]
  3. J Exp Biol. 2006 Feb;209(Pt 3):504-9 [PMID: 16424100]
  4. Brain Behav Evol. 2001;58(5):250-75 [PMID: 11978945]
  5. J Evol Biol. 2010 Jun 1;23(6):1261-77 [PMID: 20406344]
  6. Am Nat. 2008 Jul;172 Suppl 1:S63-71 [PMID: 18554145]
  7. Nature. 1997 Apr 3;386(6624):493-5 [PMID: 9087407]
  8. J Evol Biol. 2010 Nov;23(11):2300-8 [PMID: 20964761]
  9. J Neurosci. 1993 Feb;13(2):434-41 [PMID: 8426222]
  10. J Evol Biol. 2011 Nov;24(11):2434-44 [PMID: 21883614]
  11. Proc Biol Sci. 2009 Jun 7;276(1664):2085-92 [PMID: 19324759]
  12. Proc Biol Sci. 2009 Jan 7;276(1654):161-7 [PMID: 18796397]
  13. BMC Evol Biol. 2011 Mar 24;11:75 [PMID: 21435215]
  14. J Neurobiol. 2002 May;51(2):115-28 [PMID: 11932953]
  15. J Evol Biol. 2009 Mar;22(3):544-52 [PMID: 19210595]
  16. Evolution. 2009 Dec;63(12):3190-200 [PMID: 19624722]
  17. J Evol Biol. 2010 Oct;23(10):2091-103 [PMID: 20722894]
  18. J Evol Biol. 2009 Aug;22(8):1721-6 [PMID: 19549140]
  19. Trends Neurosci. 2000 Jun;23(6):251-8 [PMID: 10838594]

MeSH Term

Adaptation, Physiological
Animals
Biological Evolution
Brain
Ecosystem
Female
Finland
Food Chain
Linear Models
Male
Olfactory Perception
Random Allocation
Smegmamorpha
Sweden

Word Cloud

Created with Highcharts 10.0.0braindevelopmentperceivedplasticpredationriskpopulationfishtwomarinepondpredatorytreatmentsbulbusolfactoriuslargerpresenceenvironmentalfactordependevolutionaryhistoryAlthoughknownorganeffectscommonecologicalinteractionslikecompetitionremainedlargelyunexploredrearednine-spinedsticklebacksPungitiuspungitiuscoastalpredation-adaptedisolatedcompetition-adaptedpopulationsfactorialexperimentmanipulatingfoodsupplyseeaffectediidifferentiationresponsedetecteddifferencesplasticitychemosensorycentrehabitats:whereasbulbiolfactoriiMarineoverallIrrespectiveoriginhypothalamussmallerresultsdemonstratecaninfluenceeffectmaygivenrespectBrainpredation:responses

Similar Articles

Cited By