Myc, Aurora Kinase A, and mutant p53(R172H) co-operate in a mouse model of metastatic skin carcinoma.

E C Torchia, C Caulin, S Acin, T Terzian, B J Kubick, N F Box, D R Roop
Author Information
  1. E C Torchia: Departmant of Dermatology and Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.

Abstract

Clinical observations, as well as data obtained from the analysis of genetically engineered mouse models, firmly established the gain-of-function (GOF) properties of certain p53 mutations. However, little is known about the underlying mechanisms. We have used two independent microarray platforms to perform a comprehensive and global analysis of tumors arising in a model of metastatic skin cancer progression, which compares the consequences of a GOF p53(R172H) mutant vs p53 deficiency. DNA profiling revealed a higher level of genomic instability in GOF vs loss-of-function (LOF) p53 squamous cell carcinomas (SCCs). Moreover, GOF p53 SCCs showed preferential amplification of Myc with a corresponding increase in its expression and deregulation of Aurora Kinase A. Fluorescent in situ hybridization confirmed amplification of Myc in primary GOF p53 SCCs and its retention in metastatic tumors. We also identified by RNA profiling distinct gene expression profiles in GOF p53 tumors, which included enriched integrin and Rho signaling, independent of tumor stage. Thus, the progression of GOF p53 papillomas to carcinoma was marked by the acquisition of epithelial-to-mesenchymal transition and metastatic signatures. In contrast, LOF p53 tumors showed enrichment of genes associated with cancer proliferation and chromosomal instability. Collectively, these observations suggest that genomic instability has a prominent role in the early stages of GOF p53 tumor progression (that is, papillomas), whereas it is implicated at a later stage in LOF p53 tumors (that is, SCCs). This model will allow us to identify specific targets in mutant p53 SCCs, which may lead to the development of new therapeutic agents for the treatment of metastatic SCCs.

References

  1. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4174-9 [PMID: 10760284]
  2. Oncogene. 2010 May 6;29(18):2628-37 [PMID: 20190820]
  3. Genome Biol. 2003;4(5):P3 [PMID: 12734009]
  4. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2827-31 [PMID: 8464896]
  5. J Invest Dermatol. 2004 Jan;122(1):190-200 [PMID: 14962108]
  6. Lung Cancer. 2009 Dec;66(3):372-8 [PMID: 19324446]
  7. Cancer Lett. 2005 Dec 8;230(1):6-19 [PMID: 16253756]
  8. J Pathol. 2010 Oct;222(2):129-37 [PMID: 20662002]
  9. Curr Pharm Des. 2011;17(6):560-8 [PMID: 21391906]
  10. Cancer Res. 2009 Sep 15;69(18):7207-15 [PMID: 19738056]
  11. Cancer Lett. 2010 Jul 28;293(2):230-9 [PMID: 20144848]
  12. Nat Genet. 2004 Dec;36(12):1306-11 [PMID: 15565109]
  13. Cancer Res. 2006 Jun 15;66(12):6319-26 [PMID: 16778209]
  14. Med Res Rev. 2011 Sep;31(5):757-93 [PMID: 20196102]
  15. Nature. 2003 Feb 6;421(6923):639-43 [PMID: 12571598]
  16. Mol Cancer Res. 2008 May;6(5):760-9 [PMID: 18505921]
  17. Blood. 2010 Sep 2;116(9):1498-505 [PMID: 20519624]
  18. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  19. Curr Pharm Des. 2009;15(12):1373-84 [PMID: 19355975]
  20. Trends Cell Biol. 2008 May;18(5):210-9 [PMID: 18394899]
  21. Oncogene. 2006 Jan 5;25(1):130-8 [PMID: 16116477]
  22. Oncogene. 2003 Oct 16;22(46):7155-69 [PMID: 14562044]
  23. CA Cancer J Clin. 2009 Jul-Aug;59(4):225-49 [PMID: 19474385]
  24. Cancer Cell. 2005 May;7(5):469-83 [PMID: 15894267]
  25. J Med Genet. 2008 Aug;45(8):535-8 [PMID: 18511570]
  26. Matrix Biol. 2002 Apr;21(3):297-307 [PMID: 12009335]
  27. J Clin Pathol. 2010 Mar;63(3):204-9 [PMID: 19955555]
  28. Dev Cell. 2007 May;12(5):699-712 [PMID: 17488622]
  29. Arch Dermatol. 1995 Jul;131(7):796-800 [PMID: 7611795]
  30. Drug Discov Today. 2011 Mar;16(5-6):219-28 [PMID: 21262381]
  31. Cancer Res. 2007 Nov 1;67(21):10148-58 [PMID: 17981789]
  32. Mol Carcinog. 1991;4(3):196-202 [PMID: 2064725]
  33. Nat Cell Biol. 2010 May;12(5):457-67 [PMID: 20383141]
  34. Am J Otolaryngol. 1992 May-Jun;13(3):168-71 [PMID: 1626617]
  35. Genes Dev. 2006 May 15;20(10):1331-42 [PMID: 16702406]
  36. Hepatogastroenterology. 2006 Mar-Apr;53(68):192-5 [PMID: 16608022]
  37. BMC Bioinformatics. 2004 Feb 18;5:16 [PMID: 14975175]
  38. Nat Rev Cancer. 2009 Oct;9(10):701-13 [PMID: 19693097]
  39. Biochem J. 2007 Apr 1;403(1):119-27 [PMID: 17125467]
  40. Oncogene. 2005 Apr 18;24(17):2899-908 [PMID: 15838523]
  41. Biochim Biophys Acta. 2009 Dec;1796(2):91-8 [PMID: 19327386]
  42. Cell. 1993 Sep 10;74(5):813-22 [PMID: 8374952]
  43. Nat Genet. 2003 Jul;34(3):267-73 [PMID: 12808457]
  44. Oncogene. 2001 Aug 30;20(38):5341-9 [PMID: 11536046]
  45. Exp Mol Med. 2010 Nov 30;42(11):759-67 [PMID: 20890087]
  46. Bioorg Med Chem Lett. 2009 Nov 1;19(21):6038-41 [PMID: 19800226]
  47. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  48. Mutat Res. 2005 Apr 1;571(1-2):43-56 [PMID: 15748637]
  49. Cell. 2009 Dec 24;139(7):1327-41 [PMID: 20064378]
  50. Eur J Cancer B Oral Oncol. 1996 May;32B(3):150-3 [PMID: 8762870]
  51. Stat Med. 1990 Jul;9(7):811-8 [PMID: 2218183]
  52. Cancer Lett. 1994 Jun 30;81(2):165-9 [PMID: 8012933]
  53. Carcinogenesis. 2005 Oct;26(10):1657-67 [PMID: 15905207]
  54. Cell. 2004 Dec 17;119(6):847-60 [PMID: 15607980]
  55. Lung. 2003;181(5):245-58 [PMID: 14705768]
  56. J Invest Dermatol. 2003 Apr;120(4):676-82 [PMID: 12648234]
  57. Cell Death Differ. 2010 Sep;17(9):1486-500 [PMID: 20203688]
  58. Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3964-9 [PMID: 19225112]
  59. Oncogene. 2007 Oct 18;26(48):6896-904 [PMID: 17486075]
  60. Nat Genet. 2006 Sep;38(9):1043-8 [PMID: 16921376]
  61. Cell. 2000 Jan 7;100(1):57-70 [PMID: 10647931]
  62. Genes Dev. 2008 May 15;22(10):1337-44 [PMID: 18483220]
  63. Cell. 2004 Dec 17;119(6):861-72 [PMID: 15607981]
  64. Cell Cycle. 2007 May 2;6(9):1024-9 [PMID: 17426456]
  65. Nat Rev Clin Oncol. 2011 Jan;8(1):25-37 [PMID: 20975744]
  66. Nat Genet. 2005 Apr;37(4):401-6 [PMID: 15793587]
  67. N Engl J Med. 2003 Apr 24;348(17):1681-91 [PMID: 12711744]
  68. Mol Carcinog. 1998 Nov;23(3):185-92 [PMID: 9833779]
  69. J Clin Invest. 2007 Jul;117(7):1893-901 [PMID: 17607363]
  70. J Am Acad Dermatol. 2006 Sep;55(3):490-500 [PMID: 16908356]
  71. Carcinogenesis. 2009 Sep;30(9):1469-74 [PMID: 19372138]

Grants

  1. DE015344/NIDCR NIH HHS
  2. U01 CA105491/NCI NIH HHS
  3. CA52607/NCI NIH HHS
  4. R01 DE015344/NIDCR NIH HHS
  5. CA105491/NCI NIH HHS
  6. R01 CA052607/NCI NIH HHS

MeSH Term

Animals
Aurora Kinase A
Aurora Kinases
Carcinoma, Squamous Cell
Disease Models, Animal
Disease Progression
Epithelial-Mesenchymal Transition
Gene Amplification
Genes, myc
Genomic Instability
Integrins
Mice
Mutation
Papilloma
Protein Serine-Threonine Kinases
Skin Neoplasms
Tumor Suppressor Protein p53
Up-Regulation

Chemicals

Integrins
Tumor Suppressor Protein p53
Aurka protein, mouse
Aurora Kinase A
Aurora Kinases
Protein Serine-Threonine Kinases

Word Cloud

Created with Highcharts 10.0.0p53GOFSCCstumorsmetastaticmodelprogressionmutantinstabilityLOFMycobservationsanalysismouseindependentskincancerR172HvsprofilinggenomicshowedamplificationexpressionAuroraKinasetumorstagepapillomascarcinomaClinicalwelldataobtainedgeneticallyengineeredmodelsfirmlyestablishedgain-of-functionpropertiescertainmutationsHoweverlittleknownunderlyingmechanismsusedtwomicroarrayplatformsperformcomprehensiveglobalarisingcomparesconsequencesdeficiencyDNArevealedhigherlevelloss-of-functionsquamouscellcarcinomasMoreoverpreferentialcorrespondingincreasederegulationFluorescentsituhybridizationconfirmedprimaryretentionalsoidentifiedRNAdistinctgeneprofilesincludedenrichedintegrinRhosignalingThusmarkedacquisitionepithelial-to-mesenchymaltransitionsignaturescontrastenrichmentgenesassociatedproliferationchromosomalCollectivelysuggestprominentroleearlystageswhereasimplicatedlaterwillallowusidentifyspecifictargetsmayleaddevelopmentnewtherapeuticagentstreatmentco-operate

Similar Articles

Cited By